On the Cauchy problem for a weakly dissipative Camassa-Holm equation in critical Besov spaces

被引:1
作者
Meng, Zhiying [1 ]
Yin, Zhaoyang [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou, Peoples R China
[2] Macau Univ Sci & Technol, Fac Informat Technol, Taipa, Macao, Peoples R China
基金
中国国家自然科学基金;
关键词
A weakly dissipative Camassa-Holm equation; local well-posedness; global existence; blow up; Ill-posedness; GLOBAL CONSERVATIVE SOLUTIONS; SHALLOW-WATER EQUATION; WELL-POSEDNESS; ILL-POSEDNESS; WAVE BREAKING; EXISTENCE; BLOWUP; STABILITY;
D O I
10.1080/00036811.2022.2118118
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we mainly consider the Cauchy problem of a weakly dissipative Camassa-Holm equation. We first establish the local well-posedness of equation in Besov spaces B-p,r(s) with s > 1 + 1/p and s = 1 + 1/p, r = 1, p epsilon [1,infinity). Then, we prove the global existence for small data, and present two blow-up criteria. Finally, we get two blow-up results, which can be used in the proof of the ill-posedness in critical Besov spaces.
引用
收藏
页码:4432 / 4449
页数:18
相关论文
共 42 条
[1]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7
[2]   Blowup issues for a class of nonlinear dispersive wave equations [J].
Brandolese, Lorenzo ;
Cortez, Manuel Fernando .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (12) :3981-3998
[3]   Global dissipative solutions of the Camassa-Holm equation [J].
Bressan, Alberto ;
Constantin, Adrian .
ANALYSIS AND APPLICATIONS, 2007, 5 (01) :1-27
[4]   Global conservative solutions of the Camassa-Holm equation [J].
Bressan, Alberto ;
Constantin, Adrian .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 183 (02) :215-239
[5]  
Camassa R., 1994, ADV APPL MECH, V31, P1, DOI [10.1016/S0065-2156(08)70254-0, DOI 10.1016/S0065-2156(08)70254-0]
[6]  
Constantin A, 2000, COMMUN PUR APPL MATH, V53, P603
[7]  
Constantin A, 1998, COMMUN PUR APPL MATH, V51, P475, DOI 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO
[8]  
2-5
[9]   Wave breaking for nonlinear nonlocal shallow water equations [J].
Constantin, A ;
Escher, J .
ACTA MATHEMATICA, 1998, 181 (02) :229-243
[10]  
Constantin A, 1999, COMMUN PUR APPL MATH, V52, P949, DOI 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO