A quantitative version of the Morse lemma and quasi-isometries fixing the ideal boundary

被引:7
作者
Shchur, Vladimir [1 ,2 ]
机构
[1] Univ Paris 11, F-91405 Orsay, France
[2] Ecole Normale Super, F-75230 Paris 05, France
关键词
Morse lemma; Quasi-isometry; Quasi-geodesic; Hyperbolic space; Hyperbolic group;
D O I
10.1016/j.jfa.2012.11.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Morse lemma is fundamental in hyperbolic group theory. Using exponential contraction, we establish an upper bound for the Morse lemma that is optimal up to multiplicative constants, which we demonstrate by presenting a concrete example. We also prove an "anti" version of the Morse lemma. We introduce the notion of a geodesically rich space and consider applications of these results to the displacement of points under quasi-isometries that fix the ideal boundary. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:815 / 836
页数:22
相关论文
共 6 条
[1]  
[Anonymous], PROGR MATH
[2]   Embeddings of Gromov hyperbolic spaces [J].
Bonk, M ;
Schramm, O .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, 10 (02) :266-306
[3]  
Dragan F., 2008, S COMP GEOM SOCG 200
[4]  
Gromov M., 1984, P INT C MATH WARS 19, V1, P385
[5]  
Gromov M., 1987, ESSAYS GROUP THEORY, P75, DOI 10.1007/978-1-4613-9586-7_3
[6]  
Verjovsky A., 1990, GROUP THEORY GEOMETR