Labelling a single particle for positron emission particle tracking using direct activation and ion-exchange techniques

被引:92
|
作者
Fan, X. [1 ]
Parker, D. J. [1 ]
Smith, M. D. [1 ]
机构
[1] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
PEPT; tracer labelling; ion-exchange; tracer property; direct activation;
D O I
10.1016/j.nima.2006.03.015
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Positron emission particle tracking (PEPT) is a non-invasive technique used for obtaining dynamic information within multiphase systems. It involves tracking a single radioactively labelled tracer particle. The tracking efficiency and representative of PEPT data are crucially dependent on the amount of radioactivity labelled in a single particle, as well as the physical and chemical properties of a tracer. This paper will discuss the effect of tracer properties on PEPT data and two labelling techniques, direct activation and ion-exchange, in detail. In direct activation, particles are directly bombarded using a 33 MeV He-3 beam. A few of the oxygen atoms in the particles are then converted into F-18 radioisotope. Direct activation can be used to label a particle with a size range from 1 to 10 mm, but the material must be able to resist a high temperature. The ion-exchange technique can be used to label smaller resin particles with a size ranging from 60 to 1000 mu m. The radioactivity labelled in a single resin bead is controlled by ion-exchange properties of the resin material, anions present in the radioactive water and processing time. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:345 / 350
页数:6
相关论文
共 50 条
  • [1] Positron emission particle tracking - Application and labelling techniques
    Parker, David J.
    Fan, Xianfeng
    PARTICUOLOGY, 2008, 6 (01) : 16 - 23
  • [2] Positron emission particle tracking——Application and labelling techniques
    David J. Parker
    Particuology, 2008, (01) : 16 - 23
  • [3] Direct mineral tracer activation in positron emission particle tracking of a flotation cell
    Boucher, Darryel
    Jordens, Adam
    Sovechles, Joshua
    Langlois, Ray
    Leadbeater, Thomas W.
    Rowson, Neil A.
    Cilliers, Jan J.
    Waters, Kristian E.
    MINERALS ENGINEERING, 2017, 100 : 155 - 165
  • [4] Positron emission particle tracking using a modular positron camera
    Parker, D. J.
    Leadbeater, T. W.
    Fan, X.
    Hausard, M. N.
    Ingram, A.
    Yang, Z.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2009, 604 (1-2) : 339 - 342
  • [5] Positron emission particle tracking using machine learning
    Nicusan, A. L.
    Windows-Yule, C. R. K.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2020, 91 (01)
  • [6] Particle flow in a hydrocyclone investigated by positron emission particle tracking
    Chang, Y. -F.
    Ilea, C. G.
    Aasen, O. L.
    Hoffmann, A. C.
    CHEMICAL ENGINEERING SCIENCE, 2011, 66 (18) : 4203 - 4211
  • [7] Investigation of granular impact using positron emission particle tracking
    Marston, J. O.
    Thoroddsen, S. T.
    POWDER TECHNOLOGY, 2015, 274 : 284 - 288
  • [8] Positron Emission Particle Tracking of Granular Flows
    Windows-Yule, C. R. K.
    Seville, J. P. K.
    Ingram, A.
    Parker, D. J.
    ANNUAL REVIEW OF CHEMICAL AND BIOMOLECULAR ENGINEERING, VOL 11, 2020, 11 : 367 - 396
  • [9] Positron emission particle tracking measurements with 50 micron tracers
    Cole, K. E.
    Buffler, A.
    van der Meulen, N. P.
    Cilliers, J. J.
    Franzidis, J-P.
    Govender, I.
    Liu, C.
    van Heerden, M. R.
    CHEMICAL ENGINEERING SCIENCE, 2012, 75 : 235 - 242
  • [10] Study of the dispersion in rotary kilns using Positron Emission Particle Tracking
    desBoscs, JM
    Seville, JPK
    Parker, DJ
    Ferlin, P
    Bourlier, C
    1997 JUBILEE RESEARCH EVENT, VOLS 1 AND 2, 1997, : 533 - 536