On indecomposable decompositions of CS-modules

被引:8
作者
Dung, NV
机构
来源
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS | 1996年 / 61卷
关键词
D O I
10.1017/S1446788700000057
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that, over any ring R, the direct sum M = (+i is an element of l)M(i) of uniform right R-modules M(i) with local endomorphism rings is a CS-module if and only if every uniform submodule of M is essential in a direct summand of M and there does not exist an infinite sequence of non-isomorphic monomorphisms [GRAPHICS] with distinct i(n) is an element of I. As a consequence, any CS-module which is a direct sum of submodules with local endomorphism rings has the exchange property.
引用
收藏
页码:30 / 41
页数:12
相关论文
共 22 条
[1]  
ANDERSON FW, 1992, GRDUATE TEXTS MATH, V13
[2]  
Baba Y., 1990, TSUKUBA MATH J, V14, P53, DOI [DOI 10.21099/tkbjm/1496161318, 10.21099/tkbjm/1496161318]
[3]   RINGS IN WHICH EVERY COMPLEMENT RIGHT IDEAL IS A DIRECT SUMMAND [J].
CHATTERS, AW ;
HAJARNAVIS, CR .
QUARTERLY JOURNAL OF MATHEMATICS, 1977, 28 (109) :61-80
[4]   WHEN IS A SELF-INJECTIVE SEMIPERFECT RING QUASI-FROBENIUS [J].
CLARK, J ;
VANHUYNH, D .
JOURNAL OF ALGEBRA, 1994, 165 (03) :531-542
[5]   SIGMA-EXTENDING MODULES [J].
CLARK, J ;
WISBAUER, R .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1995, 104 (01) :19-32
[6]   REFINEMENTS FOR INFINITE DIRECT DECOMPOSITIONS OF ALGEBRAIC SYSTEMS [J].
CRAWLEY, P ;
JONSSON, B .
PACIFIC JOURNAL OF MATHEMATICS, 1964, 14 (03) :797-&
[7]  
Goodearl KR., 1976, Ring Theory: Nonsingular Rings and Modules
[8]  
HARADA M, 1971, OSAKA J MATH, V8, P309
[9]  
Harada M., 1983, LECT NOTES PURE APPL, V88
[10]  
KAMAL MA, 1988, OSAKA J MATH, V25, P539