The generalized Bouleau-Yor identity for a sub-fractional Brownian motion

被引:7
作者
Yan LiTan [1 ]
He Kun [1 ]
Chen Chao [2 ]
机构
[1] Donghua Univ, Coll Sci, Dept Math, Shanghai 201620, Peoples R China
[2] E China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
sub-fractional Brownian motion; Malliavin calculus; local time; Ito's formula; quadratic covariation; LOCAL TIME; ITO FORMULA; ROUGH PATH; RESPECT;
D O I
10.1007/s11425-013-4604-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S (H) be a sub-fractional Brownian motion with index 0 < H < 1/2. In this paper we study the existence of the generalized quadratic covariation [f(S (H) ), S (H) ]((W)) defined by [f(S-H), S-H](t)((W)) = lim(epsilon down arrow 0) 1/(epsilon)2H integral(t)(0){f(S-s+epsilon(H)) - f(S-s(H))}(S-s+epsilon(H) - S-s(H))ds(2H), provided the limit exists in probability, where x -> f(x) is a measurable function. We construct a Banach space H of measurable functions such that the generalized quadratic covariation exists in L-2 provided f is an element of H. Moreover, the generalized Bouleau-Yor identity takes the form integral(R)f(x)L-H(dx,t) - (2 - 2(2H-1))[f(S-H), S-H](t)((W)) for all f is an element of H, where L-H (x, t) is the weighted local time of S-H . This allows us to write the generalized Ito's formula for absolutely continuous functions with derivative belonging to H.
引用
收藏
页码:2089 / 2116
页数:28
相关论文
共 48 条
[41]   On the sub-mixed fractional Brownian motion [J].
Charles, El-Nouty ;
Mounir, Zili .
APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2015, 30 (01) :27-43
[42]   On the sub-mixed fractional Brownian motion [J].
El-Nouty Charles ;
Zili Mounir .
Applied Mathematics-A Journal of Chinese Universities, 2015, 30 :27-43
[43]   An Ito formula for generalized functionals of a fractional Brownian motion with arbitrary Hurst parameter [J].
Bender, C .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2003, 104 (01) :81-106
[44]   Large Time Behavior on the Linear Self-Interacting Diffusion Driven by Sub-Fractional Brownian Motion With Hurst Index Large Than 0.5 I: Self-Repelling Case [J].
Gao, Han ;
Guo, Rui ;
Jin, Yang ;
Yan, Litan .
FRONTIERS IN PHYSICS, 2022, 9
[45]   Generalized covariations, local time and Stratonovich Ito's formula for fractional Brownian motion with Hurst index H ≥ 1/4 [J].
Gradinaru, M ;
Russo, F ;
Vallois, P .
ANNALS OF PROBABILITY, 2003, 31 (04) :1772-1820
[46]   Adopting Feynman-Kac Formula in Stochastic Differential Equations with (Sub-)Fractional Brownian Motion [J].
Herzog, Bodo .
MATHEMATICS, 2022, 10 (03)
[47]   ENTROPY FLOW AND DE BRUIJN'S IDENTITY FOR A CLASS OF STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY FRACTIONAL BROWNIAN MOTION [J].
Choi, Michael C. H. ;
Lee, Chihoon ;
Song, Jian .
PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2021, 35 (03) :369-380
[48]   m-order integrals and generalized Ito's formula;: the case of a fractional Brownian motion with any Hurst index [J].
Gradinaru, M ;
Nourdin, I ;
Russo, F ;
Vallois, P .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2005, 41 (04) :781-806