The generalized Bouleau-Yor identity for a sub-fractional Brownian motion

被引:7
作者
Yan LiTan [1 ]
He Kun [1 ]
Chen Chao [2 ]
机构
[1] Donghua Univ, Coll Sci, Dept Math, Shanghai 201620, Peoples R China
[2] E China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
sub-fractional Brownian motion; Malliavin calculus; local time; Ito's formula; quadratic covariation; LOCAL TIME; ITO FORMULA; ROUGH PATH; RESPECT;
D O I
10.1007/s11425-013-4604-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S (H) be a sub-fractional Brownian motion with index 0 < H < 1/2. In this paper we study the existence of the generalized quadratic covariation [f(S (H) ), S (H) ]((W)) defined by [f(S-H), S-H](t)((W)) = lim(epsilon down arrow 0) 1/(epsilon)2H integral(t)(0){f(S-s+epsilon(H)) - f(S-s(H))}(S-s+epsilon(H) - S-s(H))ds(2H), provided the limit exists in probability, where x -> f(x) is a measurable function. We construct a Banach space H of measurable functions such that the generalized quadratic covariation exists in L-2 provided f is an element of H. Moreover, the generalized Bouleau-Yor identity takes the form integral(R)f(x)L-H(dx,t) - (2 - 2(2H-1))[f(S-H), S-H](t)((W)) for all f is an element of H, where L-H (x, t) is the weighted local time of S-H . This allows us to write the generalized Ito's formula for absolutely continuous functions with derivative belonging to H.
引用
收藏
页码:2089 / 2116
页数:28
相关论文
共 48 条
[21]   Variations and estimators for self-similarity parameter of sub-fractional Brownian motion via Malliavin calculus [J].
Liu, Junfeng ;
Tang, Donglei ;
Cang, Yuquan .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (07) :3276-3289
[22]   An approximate approach to fuzzy stochastic differential equations under sub-fractional Brownian motion [J].
Jafari, Hossein ;
Farahani, Hamed .
STOCHASTICS AND DYNAMICS, 2023, 23 (03)
[23]   Mixed Sub-fractional Brownian Motion and Drift Estimation of Related Ornstein–Uhlenbeck Process [J].
Chunhao Cai ;
Qinghua Wang ;
Weilin Xiao .
Communications in Mathematics and Statistics, 2023, 11 :229-255
[24]   Pricing geometric asian power options in the sub-fractional brownian motion environment * [J].
Wang, Wei ;
Cai, Guanghui ;
Tao, Xiangxing .
CHAOS SOLITONS & FRACTALS, 2021, 145
[25]   Stochastic integration with respect to the sub-fractional Brownian motion with H ∈ (0,1/2) [J].
Shen, Guangjun ;
Chen, Chao .
STATISTICS & PROBABILITY LETTERS, 2012, 82 (02) :240-251
[26]   Fuzzy simulation of European option pricing using sub-fractional Brownian motion [J].
Bian, Liu ;
Li, Zhi .
CHAOS SOLITONS & FRACTALS, 2021, 153
[27]   Mixed Sub-fractional Brownian Motion and Drift Estimation of Related Ornstein-Uhlenbeck Process [J].
Cai, Chunhao ;
Wang, Qinghua ;
Xiao, Weilin .
COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2023, 11 (02) :229-255
[28]   Maximum likelihood estimator for the sub-fractional Brownian motion approximated by a random walk [J].
Nenghui Kuang ;
Huantian Xie .
Annals of the Institute of Statistical Mathematics, 2015, 67 :75-91
[29]   Maximum likelihood estimator for the sub-fractional Brownian motion approximated by a random walk [J].
Kuang, Nenghui ;
Xie, Huantian .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2015, 67 (01) :75-91
[30]   The generalized quadratic covariation for fractional Brownian motion with Hurst index less than 1/2 [J].
Yan, Litan ;
Liu, Junfeng ;
Chen, Chao .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2014, 17 (04)