The generalized Bouleau-Yor identity for a sub-fractional Brownian motion

被引:7
作者
Yan LiTan [1 ]
He Kun [1 ]
Chen Chao [2 ]
机构
[1] Donghua Univ, Coll Sci, Dept Math, Shanghai 201620, Peoples R China
[2] E China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
sub-fractional Brownian motion; Malliavin calculus; local time; Ito's formula; quadratic covariation; LOCAL TIME; ITO FORMULA; ROUGH PATH; RESPECT;
D O I
10.1007/s11425-013-4604-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S (H) be a sub-fractional Brownian motion with index 0 < H < 1/2. In this paper we study the existence of the generalized quadratic covariation [f(S (H) ), S (H) ]((W)) defined by [f(S-H), S-H](t)((W)) = lim(epsilon down arrow 0) 1/(epsilon)2H integral(t)(0){f(S-s+epsilon(H)) - f(S-s(H))}(S-s+epsilon(H) - S-s(H))ds(2H), provided the limit exists in probability, where x -> f(x) is a measurable function. We construct a Banach space H of measurable functions such that the generalized quadratic covariation exists in L-2 provided f is an element of H. Moreover, the generalized Bouleau-Yor identity takes the form integral(R)f(x)L-H(dx,t) - (2 - 2(2H-1))[f(S-H), S-H](t)((W)) for all f is an element of H, where L-H (x, t) is the weighted local time of S-H . This allows us to write the generalized Ito's formula for absolutely continuous functions with derivative belonging to H.
引用
收藏
页码:2089 / 2116
页数:28
相关论文
共 33 条
[1]   Stochastic calculus with respect to Gaussian processes [J].
Alòs, E ;
Mazet, O ;
Nualart, D .
ANNALS OF PROBABILITY, 2001, 29 (02) :766-801
[2]  
[Anonymous], ELECT J PROBAB
[3]   On Ito's formula for elliptic diffusion processes [J].
Bardina, Xavier ;
Rovira, Carles .
BERNOULLI, 2007, 13 (03) :820-830
[4]  
Biagini F, 2008, PROBAB APPL SER, P1
[5]   Sub-fractional Brownian motion and its relation to occupation times [J].
Bojdecki, T ;
Gorostiza, LG ;
Talarczyk, A .
STATISTICS & PROBABILITY LETTERS, 2004, 69 (04) :405-419
[6]   Some extensions of fractional Brownian motion and sub-fractional Brownian motion related to particle systems [J].
Bojdecki, Tomasz ;
Gorostiza, Luis G. ;
Talarczyk, Anna .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2007, 12 :161-172
[7]  
BOULEAU N, 1981, CR ACAD SCI I-MATH, V292, P491
[8]   Integration with respect to local time [J].
Eisenbaum, N .
POTENTIAL ANALYSIS, 2000, 13 (04) :303-328
[9]  
Elworthy KD, 2007, LECT NOTES MATH, V1899, P117
[10]   Rough path integral of local time [J].
Feng, Chunrong ;
Zhao, Huaizhong .
COMPTES RENDUS MATHEMATIQUE, 2008, 346 (7-8) :431-434