The generalized Bouleau-Yor identity for a sub-fractional Brownian motion

被引:7
作者
Yan LiTan [1 ]
He Kun [1 ]
Chen Chao [2 ]
机构
[1] Donghua Univ, Coll Sci, Dept Math, Shanghai 201620, Peoples R China
[2] E China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
sub-fractional Brownian motion; Malliavin calculus; local time; Ito's formula; quadratic covariation; LOCAL TIME; ITO FORMULA; ROUGH PATH; RESPECT;
D O I
10.1007/s11425-013-4604-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S (H) be a sub-fractional Brownian motion with index 0 < H < 1/2. In this paper we study the existence of the generalized quadratic covariation [f(S (H) ), S (H) ]((W)) defined by [f(S-H), S-H](t)((W)) = lim(epsilon down arrow 0) 1/(epsilon)2H integral(t)(0){f(S-s+epsilon(H)) - f(S-s(H))}(S-s+epsilon(H) - S-s(H))ds(2H), provided the limit exists in probability, where x -> f(x) is a measurable function. We construct a Banach space H of measurable functions such that the generalized quadratic covariation exists in L-2 provided f is an element of H. Moreover, the generalized Bouleau-Yor identity takes the form integral(R)f(x)L-H(dx,t) - (2 - 2(2H-1))[f(S-H), S-H](t)((W)) for all f is an element of H, where L-H (x, t) is the weighted local time of S-H . This allows us to write the generalized Ito's formula for absolutely continuous functions with derivative belonging to H.
引用
收藏
页码:2089 / 2116
页数:28
相关论文
共 48 条
  • [1] The generalized Bouleau-Yor identity for a sub-fractional Brownian motion
    YAN LiTan
    HE Kun
    CHEN Chao
    ScienceChina(Mathematics), 2013, 56 (10) : 2089 - 2116
  • [2] The generalized Bouleau-Yor identity for a sub-fractional Brownian motion
    LiTan Yan
    Kun He
    Chao Chen
    Science China Mathematics, 2013, 56 : 2089 - 2116
  • [3] The Bouleau-Yor identity for a bi-fractional Brownian motion
    Yan, Litan
    Gao, Bo
    Liu, Junfeng
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2014, 86 (03) : 382 - 414
  • [4] AN EXTENSION OF SUB-FRACTIONAL BROWNIAN MOTION
    Sghir, Aissa
    PUBLICACIONS MATEMATIQUES, 2013, 57 (02) : 497 - 508
  • [5] A DECOMPOSITION OF SUB-FRACTIONAL BROWNIAN MOTION
    Ruiz de Chavez, J.
    Tudor, C.
    MATHEMATICAL REPORTS, 2009, 11 (01): : 67 - 74
  • [6] Remarks on an integral functional driven by sub-fractional Brownian motion
    Shen, Guangjun
    Yan, Litan
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2011, 40 (03) : 337 - 346
  • [7] Remarks on an integral functional driven by sub-fractional Brownian motion
    Guangjun Shen
    Litan Yan
    Journal of the Korean Statistical Society, 2011, 40 : 337 - 346
  • [8] The incre ents of a sub-fractional Brownian motion
    El-Nouty, Charles
    2016 INTERNATIONAL CONFERENCE ON INFORMATION AND DIGITAL TECHNOLOGIES (IDT), 2016, : 95 - 100
  • [9] Some extensions of fractional Brownian motion and sub-fractional Brownian motion related to particle systems
    Bojdecki, Tomasz
    Gorostiza, Luis G.
    Talarczyk, Anna
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2007, 12 : 161 - 172
  • [10] More on maximal inequalities for sub-fractional Brownian motion
    Rao, B. L. S. Prakasa
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2020, 38 (02) : 238 - 247