Numerical simulation and analysis of femtosecond pulse evolution in liquid-core photonic crystal fiber based on adaptive step-size methods

被引:11
作者
Wen, Jin [1 ]
Duan, Lina [1 ]
Ma, Chengju [1 ]
Fan, Wei [1 ]
机构
[1] Xian Shiyou Univ, Sch Sci, Xian 710065, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Supercontinuum generation; Pulse evolution; Liquid-core photonic crystal fiber; Adaptive step-size method; COHERENT SUPERCONTINUUM GENERATION; OPTICAL-FIBERS; RUNGE-KUTTA; BROAD-BAND; LIGHT;
D O I
10.1007/s11082-019-1906-9
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The adaptive step-size methods including conservation quantity error method (CQEM) and local error method (LEM) are described and used to investigate the femtosecond pulse evolution in liquid-core photonic crystal fibers. The efficiency and accuracy of the numerical results obtained from CQEM and LEM in frequency domain (FD) and time domain (TD) are compared and discussed under the fixed numerical parameters respectively. The numerical results represent that LEM has the higher accuracy due to the integration of nonlinear operator that is more efficient than CQEM. The femtosecond pulse evolution in liquid-core photonic crystal fiber is described and analyzed using LEM. Moreover, the influences of the peak power of pulse and length of liquid-core photonic crystal fibers on the supercontinuum generation are also obtained based on LEM-FD. This study is helpful optimizing the numerical process in ultra-short pulse evolution based on adaptive step-size methods.
引用
收藏
页数:14
相关论文
共 26 条
  • [11] Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion
    Hooper, L. E.
    Mosley, P. J.
    Muir, A. C.
    Wadsworth, W. J.
    Knight, J. C.
    [J]. OPTICS EXPRESS, 2011, 19 (06): : 4902 - 4907
  • [12] Ultraflat, broadband, and highly coherent supercontinuum generation in all-solid microstructured optical fibers with all-normal dispersion
    Huang, Chunlei
    Liao, Meisong
    Bi, Wanjun
    Li, Xia
    Hu, Lili
    Zhang, Long
    Wang, Longfei
    Qin, Guanshi
    Xue, Tianfeng
    Chen, Danping
    Gao, Weiqing
    [J]. PHOTONICS RESEARCH, 2018, 6 (06) : 601 - 608
  • [13] A fourth-order Runge-Kutta in the interaction picture method for, simulating supercontinuum generation in optical fibers
    Hult, Johan
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2007, 25 (12) : 3770 - 3775
  • [14] Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis
    Jones, DJ
    Diddams, SA
    Ranka, JK
    Stentz, A
    Windeler, RS
    Hall, JL
    Cundiff, ST
    [J]. SCIENCE, 2000, 288 (5466) : 635 - 639
  • [15] Mid-infrared supercontinuum generation using dispersion-engineered Ge11.5As24Se64.5 chalcogenide channel waveguide
    Karim, M. R.
    Rahman, B. M. A.
    Agrawal, Govind P.
    [J]. OPTICS EXPRESS, 2015, 23 (05): : 6903 - 6914
  • [16] Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation
    Kolesik, M
    Katona, G
    Moloney, JV
    Wright, EM
    [J]. PHYSICAL REVIEW LETTERS, 2003, 91 (04)
  • [17] Raman response function for silica fibers
    Lin, Q.
    Agrawal, Govind P.
    [J]. OPTICS LETTERS, 2006, 31 (21) : 3086 - 3088
  • [18] High-power visible-enhanced all-fiber supercontinuum generation in a seven-core photonic crystal fiber pumped at 1016 nm
    Qi, Xue
    Chen, Shengping
    Li, Zhihong
    Liu, Tong
    Ou, Yang
    Wang, Nan
    Hou, Jing
    [J]. OPTICS LETTERS, 2018, 43 (05) : 1019 - 1022
  • [19] Supercontinuum generation in organic liquid-liquid core-cladding photonic crystal fiber in visible and near-infrared regions
    Raei, Rasoul
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2018, 35 (02) : 323 - 330
  • [20] Optimum Integration Procedures for Supercontinuum Simulation
    Rieznik, A. A.
    Heidt, A. M.
    Koenig, P. G.
    Bettachini, V. A.
    Grosz, D. F.
    [J]. IEEE PHOTONICS JOURNAL, 2012, 4 (02): : 552 - 560