An evaluation of global-model hierarchical classification algorithms for hierarchical classification problems with single path of labels

被引:12
作者
Borges, Helyane Bronoski [1 ,2 ]
Silla, Carlos N., Jr. [1 ]
Nievola, Julio Cesar [2 ]
机构
[1] UTFPR Univ Tecnol Fed Parana, Maringa, Parana, Brazil
[2] PPGIa Pontificia Univ Catolica Parana PUCPR, Sao Paulo, Brazil
关键词
Hierarchical classification; Global approach; STATISTICAL COMPARISONS; CLASSIFIERS;
D O I
10.1016/j.camwa.2013.06.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Several classification tasks in different application domains can be seen as hierarchical classification problems. In order to deal with hierarchical classification problems, the use of existing flat classification approaches is not appropriate. For these reason, there has been a growing number of studies focusing on the development of novel algorithms able to induce classification models for hierarchical classification problems. In this paper we study the performance of a novel algorithm called Hierarchical Classification using a Competitive Neural Network (HC-CNN) and compare its performance against the Global-Model Naive Bayes (GMNB) on eight protein function prediction datasets. Interestingly enough, the comparison of two global-model hierarchical classification algorithms for single path of labels hierarchical classification problems has never been done before. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1991 / 2002
页数:12
相关论文
共 23 条
[1]  
Alves RT, 2008, LECT N BIOINFORMAT, V5167, P1
[2]  
[Anonymous], 2002, Proceedings of the ICML-2002 Workshop on Data Mining Lessons Learned
[3]   Hierarchical multi-label prediction of gene function [J].
Barutcuoglu, Z ;
Schapire, RE ;
Troyanskaya, OG .
BIOINFORMATICS, 2006, 22 (07) :830-836
[4]  
Borges H.B., 2012, P 8 INT C NAT COMP I, V1, P1
[5]  
Burred J J., 2003, P 6 INT C DIG AUD EF, P8
[6]  
Demsar J, 2006, J MACH LEARN RES, V7, P1
[7]  
Dougherty, 1995, P 12 INT C MACH LEAR, V1995, P194, DOI DOI 10.1016/B978-1-55860-377-6.50032-3
[8]  
Freitas A.A., 2007, ADV DATA WAREHOUSING, P179
[9]  
García S, 2008, J MACH LEARN RES, V9, P2677
[10]   Predicting gene function in a hierarchical context with an ensemble of classifiers [J].
Guan, Yuanfang ;
Myers, Chad L. ;
Hess, David C. ;
Barutcuoglu, Zafer ;
Caudy, Amy A. ;
Troyanskaya, Olga G. .
GENOME BIOLOGY, 2008, 9 (Suppl 1)