Estimation of Moisture Content Distribution in Porous Foam Using Microwave Tomography With Neural Networks

被引:12
作者
Lahivaara, Timo [1 ]
Yadav, Rahul [1 ]
Link, Guido [2 ]
Vauhkonen, Marko [1 ]
机构
[1] Univ Eastern Finland, Dept Appl Phys, Kuopio 70210, Finland
[2] Karlsruhe Inst Technol, Inst Pulsed Power & Microwave Technol, D-76344 Karlsruhe, Germany
基金
欧盟地平线“2020”; 芬兰科学院;
关键词
Estimation; microwave tomography(MWT); moisture content distribution; neural networks; INVERSE PROBLEMS; SCATTERING;
D O I
10.1109/TCI.2020.3022828
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The use of microwave tomography (MWT) in an industrial drying process is demonstrated in this feasibility study with synthetic measurement data. The studied imaging modality is applied to estimate the moisture content distribution in a polymer foam during the microwave drying process. Such moisture information is crucial in developing control strategies for controlling the microwave power for selective heating. In practice, a reconstruction time less than one second is desired for the input response to the controller. Thus, to solve the estimation problem related to MWT, a neural network based approach is applied to fulfill the requirement for a real-time reconstruction. In this work, a database containing different moisture content distribution scenarios and corresponding electromagnetic wave responses are build and used to train the machine learning algorithm. The performance of the trained network is tested with two additional datasets.
引用
收藏
页码:1351 / 1361
页数:11
相关论文
共 46 条
  • [11] Microwave imaging - Complex permittivity reconstruction with a Levenberg-Marquardt method
    Franchois, A
    Pichot, C
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1997, 45 (02) : 203 - 215
  • [12] Multipole and S-Parameter Antenna and Propagation Model
    Haynes, Mark
    Moghaddam, Mahta
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2011, 59 (01) : 225 - 235
  • [13] Directly Printable Moisture Sensor Tag for Intelligent Packaging
    Javed, Nimra
    Habib, Ayesha
    Amin, Yasar
    Loo, Jonathan
    Akram, Adeel
    Tenhunen, Hannu
    [J]. IEEE SENSORS JOURNAL, 2016, 16 (16) : 6147 - 6148
  • [14] Statistical inverse problems: Discretization, model reduction and inverse crimes
    Kaipio, Jari
    Somersalo, Erkki
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 198 (02) : 493 - 504
  • [15] Kingma D. P., 2015, P INT C LEARN REPR, V1, P1
  • [16] ImageNet Classification with Deep Convolutional Neural Networks
    Krizhevsky, Alex
    Sutskever, Ilya
    Hinton, Geoffrey E.
    [J]. COMMUNICATIONS OF THE ACM, 2017, 60 (06) : 84 - 90
  • [17] Estimation of groundwater storage from seismic data using deep learning
    Lahivaara, Timo
    Malehmir, Alireza
    Pasanen, Antti
    Karkkainen, Leo
    Huttunen, Janne M. J.
    Hesthaven, Jan S.
    [J]. GEOPHYSICAL PROSPECTING, 2019, 67 (08) : 2115 - 2126
  • [18] Deep convolutional neural networks for estimating porous material parameters with ultrasound tomography
    Lahivaara, Timo
    Karkkainen, Leo
    Huttunen, Janne M. J.
    Hesthaven, Jan S.
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2018, 143 (02) : 1148 - 1158
  • [19] DeepNIS: Deep Neural Network for Nonlinear Electromagnetic Inverse Scattering
    Li, Lianlin
    Wang, Long Gang
    Teixeira, Fernando L.
    Liu, Che
    Nehorai, Arye
    Cui, Tie Jun
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2019, 67 (03) : 1819 - 1825
  • [20] Rice moisture imaging using electromagnetic measurement technique
    Lim, MC
    Lim, KC
    Abdullah, MZ
    [J]. FOOD AND BIOPRODUCTS PROCESSING, 2003, 81 (C3) : 159 - 169