Deconfined Criticality Flow in the Heisenberg Model with Ring-Exchange Interactions

被引:100
作者
Chen, Kun [1 ,2 ,3 ]
Huang, Yuan [1 ,2 ,3 ]
Deng, Youjin [1 ,2 ,3 ]
Kuklov, A. B. [4 ]
Prokof'ev, N. V. [3 ,5 ]
Svistunov, B. V. [3 ,5 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[3] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA
[4] CUNY, CSI, Dept Engn Sci & Phys, Staten Isl, NY 10314 USA
[5] Kurchatov Inst, Russian Res Ctr, Moscow 123182, Russia
基金
美国国家科学基金会;
关键词
PHASE-TRANSITIONS; SUPERCONDUCTOR; STATE;
D O I
10.1103/PhysRevLett.110.185701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum transition points in the J-Q model-the test bed of the deconfined critical point theory-and the SU(2)-symmetric discrete noncompact CP1 representation of the deconfined critical action are directly compared by the flowgram method. We find that the flows of two systems coincide in a broad region of linear system sizes (10 < L < 50 for the J-Q model), implying that the deconfined critical point theory correctly captures the mesoscopic physics of competition between the antiferromagnetic and valence-bond orders in quantum spin systems. At larger sizes, however, we observe significant deviations between the two flows which both demonstrate strong violations of scale invariance. This reliably rules out the second-order transition scenario in at least one of the two models and suggests the most likely explanation for the nature of the transition in the J-Q model.
引用
收藏
页数:5
相关论文
共 24 条
[1]  
Babaev E, 2004, NUCL PHYS B, V686, P397, DOI 10.1016/j.nuciphysb.2004.02.021
[2]   Putting competing orders in their place near the Mott transition [J].
Balents, L ;
Bartosch, L ;
Burkov, A ;
Sachdev, S ;
Sengupta, K .
PHYSICAL REVIEW B, 2005, 71 (14)
[3]   Putting competing orders in their place near the Mott transition. II. The doped quantum dimer model [J].
Balents, L ;
Bartosch, L ;
Burkov, A ;
Sachdev, S ;
Sengupta, K .
PHYSICAL REVIEW B, 2005, 71 (14)
[4]   Atomic quantum simulator for lattice gauge theories and ring exchange models -: art. no. 040402 [J].
Büchler, HP ;
Hermele, M ;
Huber, SD ;
Fisher, MPA ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 2005, 95 (04)
[5]   From an antiferromagnet to a valence bond solid: evidence for a first-order phase transition [J].
Jiang, F-J ;
Nyfeler, M. ;
Chandrasekharan, S. ;
Wiese, U-J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
[6]   First-order phase transition in easy-plane quantum antiferromagnets [J].
Kragset, S. ;
Smorgrav, E. ;
Hove, J. ;
Nogueira, F. S. ;
Sudbo, A. .
PHYSICAL REVIEW LETTERS, 2006, 97 (24)
[7]   Weak first-order superfluid-solid quantum phase transitions [J].
Kuklov, A ;
Prokof'ev, N ;
Svistunov, B .
PHYSICAL REVIEW LETTERS, 2004, 93 (23)
[8]   Deconfined criticality, runaway flow in the two-component scalar electrodynamics and weak first-order superfluid-solid transitions [J].
Kuklov, A. B. ;
Prokof'ev, N. V. ;
Svistunov, B. V. ;
Troyer, M. .
ANNALS OF PHYSICS, 2006, 321 (07) :1602-1621
[9]   Deconfined criticality: Generic first-order transition in the SU(2) symmetry case [J].
Kuklov, A. B. ;
Matsumoto, M. ;
Prokof'ev, N. V. ;
Svistunov, B. V. ;
Troyer, M. .
PHYSICAL REVIEW LETTERS, 2008, 101 (05)
[10]   Antiferromagnetic to valence-bond-solid transitions in two-dimensional SU(N) Heisenberg models with multispin interactions [J].
Lou, Jie ;
Sandvik, Anders W. ;
Kawashima, Naoki .
PHYSICAL REVIEW B, 2009, 80 (18)