Chaotic motions of a two-dimensional airfoil with cubic nonlinearity in supersonic flow

被引:4
作者
Algaba, Antonio [1 ]
Fernandez-Sanchez, Fernando [2 ]
Merino, Manuel [1 ]
Rodriguez-Luis, Alejandro J. [2 ]
机构
[1] Univ Huelva, Fac Ciencias Experiment, Dept Maternat, Huelva 21071, Spain
[2] Univ Seville, ES Ingenieros, Dept Matemat Aplicada 2, Seville 41092, Spain
关键词
Airfoil; Chaotic motion; Nonlinearity; Si'lnikov criterion; HETEROCLINIC ORBITS; SHILNIKOV TYPE; CHEN CIRCUIT; TIME-DELAY; SYSTEM; EXISTENCE; ATTRACTOR;
D O I
10.1016/j.ast.2012.12.008
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
In the commented paper the authors consider a model of a two-dimensional airfoil with cubic nonlinearity in supersonic flow. They claim to prove the existence of Si'lnikov homoclinic orbits by using the undetermined coefficient method and, consequently, Smale horseshoe chaos occurs via Si'lnikov criterion. Unfortunately, their demonstration is invalid because the form of the function they assume in the series expansion for the homoclinic orbits is incorrect. Namely, they compose the homoclinic orbit of the same manifold, which is stable in forward time and unstable in reverse time. (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:431 / 434
页数:4
相关论文
共 23 条
[1]  
Algaba A., 2008, CHAOS, V18
[2]  
Algaba A., 2011, J COMPUT NONLINEAR D, V6
[3]   Comments on "Analysis and application of a novel three-dimensional energy-saving and emission-reduction dynamic evolution system" [Energy 40 (2012) 291-299] [J].
Algaba, Antonio ;
Fernandez-Sanchez, Fernando ;
Merino, Manuel ;
Rodriguez-Luis, Alejandro J. .
ENERGY, 2012, 47 (01) :630-633
[4]   Comment on 'Stability and chaos of a damped satellite partially filled with liquid' [Acta Astronautica 65 (2009) 1628-1638] [J].
Algaba, Antonio ;
Fernandez-Sanchez, Fernando ;
Merino, Manuel ;
Rodriguez-Luis, Alejandro J. .
ACTA ASTRONAUTICA, 2012, 80 :36-39
[5]   Rebuttal of "Existence of attractor and control of a 3D differential system" by Z. Wang [J].
Algaba, Antonio ;
Fernandez-Sanchez, Fernando ;
Merino, Manuel ;
Rodriguez-Luis, Alejandro J. .
NONLINEAR DYNAMICS, 2012, 69 (04) :2289-2291
[6]   Comment on "Existence of heteroclinic orbits of the Shil'nikov type in a 3D quadratic autonomous chaotic system" [J. Math. Anal. Appl. 315 (2006) 106-119] [J].
Algaba, Antonio ;
Fernandez-Sanchez, Fernando ;
Merino, Manuel ;
Rodriguez-Luis, Alejandro J. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 392 (01) :99-101
[7]   Comment on "Heteroclinic orbits in Chen circuit with time delay" [Commun. Nonlinear Sci. Numer. Simulat. 15 (2010) 3058-3066] [J].
Algaba, Antonio ;
Fernandez-Sanchez, Fernando ;
Merino, Manuel ;
Rodriguez-Luis, Alejandro J. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (06) :2708-2710
[8]  
Chicone Carmen, 2006, Ordinary Differential Equations with Applications
[9]  
Coddington EA, 1955, THEORY DIFFERENTIAL
[10]   Analysis and application of a novel three-dimensional energy-saving and emission-reduction dynamic evolution system [J].
Fang, Guochang ;
Tian, Lixin ;
Sun, Mei ;
Fu, Min .
ENERGY, 2012, 40 (01) :291-299