Transition between nonlinear and linear eigenvalue problems

被引:2
作者
Jiang, Guosheng [1 ]
Liu, Yongjie [1 ]
Liu, Zhaoli [2 ]
机构
[1] Peking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R China
[2] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear eigenvalue problem; Linear eigenvalue problem; Transition; EQUATIONS;
D O I
10.1016/j.jde.2020.07.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study convergence of variational solutions of the nonlinear eigenvalue problem -Delta u = lambda vertical bar u vertical bar(p-2)u, u is an element of H-0(1)(Omega), as p down arrow 2 or as p up arrow 2, where Omega is a bounded domain in R-N with smooth boundary. It turns out that if lambda is not an eigenvalue of -Delta then the solutions either blow up or vanish according to p down arrow 2 or p up arrow 2, while if is an eigenvalue of -Delta then the solutions converge to the associated eigenspace. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:10919 / 10936
页数:18
相关论文
共 11 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]  
[Anonymous], 1997, Graduate Studies in Mathematics
[3]   VARIANT OF LUSTERNIK-SCHNIRELMAN THEORY [J].
CLARK, DC .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1972, 22 (01) :65-&
[4]   Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle [J].
Damascelli, L ;
Grossi, M ;
Pacella, F .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1999, 16 (05) :631-652
[5]  
Gilbarg D., 2001, ELLIPTIC PARTIAL DIF
[6]  
Han X, 2016, INT CONF CLOUD COMPU, P171, DOI 10.1109/CCIS.2016.7790247
[7]   UNIQUENESS OF LEAST ENERGY SOLUTIONS TO A SEMILINEAR ELLIPTIC EQUATION IN R(2) [J].
LIN, CS .
MANUSCRIPTA MATHEMATICA, 1994, 84 (01) :13-19
[8]   Schrodinger equations with concave and convex nonlinearities [J].
Liu, ZL ;
Wang, ZQ .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2005, 56 (04) :609-629
[9]  
Rabinowitz P.H., 1986, CBMS REG C SER MATH, V65
[10]  
Stam A., 1959, Information and Control, V2, P101