Transition between nonlinear and linear eigenvalue problems

被引:2
作者
Jiang, Guosheng [1 ]
Liu, Yongjie [1 ]
Liu, Zhaoli [2 ]
机构
[1] Peking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R China
[2] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear eigenvalue problem; Linear eigenvalue problem; Transition; EQUATIONS;
D O I
10.1016/j.jde.2020.07.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study convergence of variational solutions of the nonlinear eigenvalue problem -Delta u = lambda vertical bar u vertical bar(p-2)u, u is an element of H-0(1)(Omega), as p down arrow 2 or as p up arrow 2, where Omega is a bounded domain in R-N with smooth boundary. It turns out that if lambda is not an eigenvalue of -Delta then the solutions either blow up or vanish according to p down arrow 2 or p up arrow 2, while if is an eigenvalue of -Delta then the solutions converge to the associated eigenspace. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:10919 / 10936
页数:18
相关论文
共 11 条
  • [1] Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
  • [2] VARIANT OF LUSTERNIK-SCHNIRELMAN THEORY
    CLARK, DC
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1972, 22 (01) : 65 - &
  • [3] Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle
    Damascelli, L
    Grossi, M
    Pacella, F
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1999, 16 (05): : 631 - 652
  • [4] Gilbarg D., 2001, ELLIPTIC PARTIAL DIF
  • [5] Han X, 2016, INT CONF CLOUD COMPU, P171, DOI 10.1109/CCIS.2016.7790247
  • [6] Lieb E.H., 1997, GRADUATE STUDIES MAT, V14
  • [7] UNIQUENESS OF LEAST ENERGY SOLUTIONS TO A SEMILINEAR ELLIPTIC EQUATION IN R(2)
    LIN, CS
    [J]. MANUSCRIPTA MATHEMATICA, 1994, 84 (01) : 13 - 19
  • [8] Schrodinger equations with concave and convex nonlinearities
    Liu, ZL
    Wang, ZQ
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2005, 56 (04): : 609 - 629
  • [9] RABINowITz P. H., 1986, CBMS Reg. Conf. Ser. Math., V65
  • [10] Stam A. J., 1959, Information and Control, V2, P101, DOI [DOI 10.1016/S0019-9958(59)90348-1, 10.1016/S0019-9958(59)90348-1]