Continuous-variable quantum key distribution based on high-rate phase reference

被引:3
作者
Shi, Jinjing [1 ]
Zhou, Fang [1 ]
Chen, Shuhui [1 ]
Guo, Ying [1 ]
Huang, Duan [1 ]
机构
[1] Cent South Univ, Sch Engn & Comp Sci, Changsha 410083, Hunan, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
continuous-variable; quantum key distribution; phase reference; polarization beam splitter; CRYPTOGRAPHY;
D O I
10.1088/1555-6611/ab1657
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a high-rate phase reference scheme for continuous-variable quantum key distribution (CV-QKD). In this scheme, a transmission mode has been employed in which several quantum signal pulses are accompanied by a pair of reference pulses, calibrating the measurement bases of the communicating parties. Within a certain range, and with the ratio between quantum signal pulses and reference pulses increased, the secret key rate approaches that of the traditional CV-QKD scheme (which is a scheme without phase noise). Compared with general CV-QKD schemes, which adopt the transmission mode of a quantum signal pulse plus a pair of reference pulses, this scheme has a higher spectral efficiency, enabling high-rate CV-QKD. In addition, we reduce the interference of strong reference pulses with weak quantum signal pulses by using a pair of polarization beam splitters with a dynamic polarization controller. Simulation results demonstrate that we achieve a higher secret key rate than the self-coherent phase reference scheme. This provides a pathway towards large-scale quantum communication networks.
引用
收藏
页数:7
相关论文
共 27 条
[1]   Using quantum key distribution for cryptographic purposes: A survey [J].
Alleaume, R. ;
Branciard, C. ;
Bouda, J. ;
Debuisschert, T. ;
Dianati, M. ;
Gisin, N. ;
Godfrey, M. ;
Grangier, P. ;
Laenger, T. ;
Luetkenhaus, N. ;
Monyk, C. ;
Painchault, P. ;
Peev, M. ;
Poppe, A. ;
Pornin, T. ;
Rarity, J. ;
Renner, R. ;
Ribordy, G. ;
Riguidel, M. ;
Salvail, L. ;
Shields, A. ;
Weinfurter, H. ;
Zeilinger, A. .
THEORETICAL COMPUTER SCIENCE, 2014, 560 :62-81
[2]  
Bennett C. H., 1984, Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, P175, DOI [10.1016/j.tcs.2011.08.039, DOI 10.1016/J.TCS.2014.05.025]
[4]   Demonstration of Monogamy Relations for Einstein-Podolsky-Rosen Steering in Gaussian Cluster States [J].
Deng, Xiaowei ;
Xiang, Yu ;
Tian, Caixing ;
Adesso, Gerardo ;
He, Qiongyi ;
Gong, Qihuang ;
Su, Xiaolong ;
Xie, Changde ;
Peng, Kunchi .
PHYSICAL REVIEW LETTERS, 2017, 118 (23)
[5]   QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM [J].
EKERT, AK .
PHYSICAL REVIEW LETTERS, 1991, 67 (06) :661-663
[6]  
Fabian F, 2018, PHYS REV A, V98
[7]   Quantum cryptography [J].
Gisin, N ;
Ribordy, GG ;
Tittel, W ;
Zbinden, H .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :145-195
[8]   Quantum key distribution using gaussian-modulated coherent states [J].
Grosshans, F ;
Van Assche, G ;
Wenger, J ;
Brouri, R ;
Cerf, NJ ;
Grangier, P .
NATURE, 2003, 421 (6920) :238-241
[9]   Continuous-variable quantum key distribution based on a plug-and-play dual-phase-modulated coherent-states protocol [J].
Huang, Duan ;
Huang, Peng ;
Wang, Tao ;
Li, Huasheng ;
Zhou, Yingming ;
Zeng, Guihua .
PHYSICAL REVIEW A, 2016, 94 (03)
[10]   High-speed continuous-variable quantum key distribution without sending a local oscillator [J].
Huang, Duan ;
Huang, Peng ;
Lin, Dakai ;
Wang, Chao ;
Zeng, Guihua .
OPTICS LETTERS, 2015, 40 (16) :3695-3698