Short-term wind speed forecasting based on a hybrid model

被引:112
|
作者
Zhang, Wenyu [1 ,2 ]
Wang, Jujie [1 ,2 ]
Wang, Jianzhou [3 ]
Zhao, Zengbao [1 ,2 ]
Tian, Meng [1 ,2 ]
机构
[1] Lanzhou Univ, Coll Atmospher Sci, Key Lab Semiarid Climate Change, Minist Educ, Lanzhou 730000, Peoples R China
[2] Key Lab Arid Climat Change & Reducing Disaster Ga, Lanzhou 730000, Peoples R China
[3] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Forecasting; Wind speed; Wavelet transform; Seasonal adjustment; RBF neural networks; SUPPORT VECTOR MACHINES; RBF NEURAL-NETWORKS; PREDICTION; APPROXIMATION; GENERATION; STRATEGY;
D O I
10.1016/j.asoc.2013.02.016
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Wind power is currently one of the types of renewable energy with a large generation capacity. However, operation of wind power generation is very challenging because of the intermittent and stochastic nature of the wind speed. Wind speed forecasting is a very important part of wind parks management and the integration of wind power into electricity grids. As an artificial intelligence algorithm, radial basis function neural network (RBFNN) has been successfully applied into solving forecasting problems. In this paper, a novel approach named WTT-SAM-RBFNN for short-term wind speed forecasting is proposed by applying wavelet transform technique (WTT) into hybrid model which hybrids the seasonal adjustment method (SAM) and the RBFNN. Real data sets of wind speed in Northwest China are used to evaluate the forecasting accuracy of the proposed approach. To avoid the randomness caused by the RBFNN model or the RBFNN part of the hybrid model, all simulations in this study are repeated 30 times to get the average. Numerical results show that the WTT-SAM-RBFNN outperforms the persistence method (PM), multilayer perceptron neural network (MLP), RBFNN, hybrid SAM and RBFNN (SAM-RBFNN), and hybrid WTT and RBFNN (WTT-RBFNN). It is concluded that the proposed approach is an effective way to improve the prediction accuracy. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:3225 / 3233
页数:9
相关论文
共 50 条
  • [31] A Hybrid Forecasting Model Based on CNN and Informer for Short-Term Wind Power
    Wang, Hai-Kun
    Song, Ke
    Cheng, Yi
    FRONTIERS IN ENERGY RESEARCH, 2022, 9
  • [32] Short-Term Wind Speed Forecasting Based On Fuzzy Artmap
    Ul Haque, Ashraf
    Meng, Julian
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2011, 8 (01) : 65 - 80
  • [33] The Short-term Forecasting of Wind Speed Based on EMD and ARMA
    Yu, Min
    Zhou, Wenmeng
    Wang, Bin
    Jin, Ji
    PROCEEDINGS OF THE 2017 12TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2017, : 495 - 498
  • [34] Forecasting Short-term Wind Speed based on EMD and SVR
    Luo, Yi
    Li, Xia
    Liu, Xiangjie
    ELECTRONIC INFORMATION AND ELECTRICAL ENGINEERING, 2012, 19 : 657 - 660
  • [35] Short-term wind speed forecasting based on EMD and ANN
    Wang, Shao
    Yang, Jiang-Ping
    Li, Feng-Bing
    Liu, Ting-Lei
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2012, 40 (10): : 6 - 11
  • [36] Short-term Wind Speed Forecasting Based on GCN and FEDformer
    Sun, Yihao
    Liu, Hao
    Hu, Tianyu
    Wang, Fei
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2024, 44 (21): : 8496 - 8506
  • [37] A novel hybrid model for short-term wind power forecasting
    Du, Pei
    Wang, Jianzhou
    Yang, Wendong
    Niu, Tong
    APPLIED SOFT COMPUTING, 2019, 80 : 93 - 106
  • [38] Short-term wind speed forecasting in Germany
    Ambach, Daniel
    JOURNAL OF APPLIED STATISTICS, 2016, 43 (02) : 351 - 369
  • [39] A HYBRID MODEL FOR SHORT-TERM WIND SPEED FORECASTING BASED ON NON-POSITIVE CONSTRAINT COMBINATION THEORY
    Lu, Haiyan
    Zhang, Kequan
    Xiao, Liye
    Wang, Chen
    UNCERTAINTY MODELLING IN KNOWLEDGE ENGINEERING AND DECISION MAKING, 2016, 10 : 240 - 245
  • [40] A Novel Combined Model Based on Hybrid Data Decomposition, MSWOA and ENN for Short-term Wind Speed Forecasting
    Zhang, Shengcai
    Zhu, Changsheng
    Guo, Xiuting
    IAENG International Journal of Computer Science, 2023, 50 (03)