Decreasing the Size of the Restricted Boltzmann Machine

被引:1
作者
Saito, Yohei [1 ]
Kato, Takuya [2 ]
机构
[1] Univ Tokyo, Inst Ind Sci, Meguro Ku, Tokyo 1538505, Japan
[2] Univ Tokyo, Grad Sch Informat Sci & Technol, Dept Math informat, Bunkyo Ku, Tokyo 1138654, Japan
关键词
D O I
10.1162/neco_a_01176
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this letter, we propose a method to decrease the number of hidden units of the restricted Boltzmann machine while avoiding a decrease in the performance quantified by the Kullback-Leibler divergence. Our algorithm is then demonstrated by numerical simulations.
引用
收藏
页码:784 / 805
页数:22
相关论文
共 50 条
  • [41] Accelerated learning for Restricted Boltzmann Machine with momentum term
    Zareba, Szymon
    Gonczarek, Adam
    Tomczak, Jakub M.
    Swiatek, Jerzy
    [J]. PROGRESS IN SYSTEMS ENGINEERING, 2015, 366 : 187 - 192
  • [42] Temporally Adaptive Restricted Boltzmann Machine for Background Modeling
    Xu, Linli
    Li, Yitan
    Wang, Yubo
    Chen, Enhong
    [J]. PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 1938 - 1944
  • [43] Learning to use spike timing in a restricted Boltzmann machine
    Hinton, GE
    Brown, AD
    [J]. PROBABILISTIC MODELS OF THE BRAIN: PERCEPTION AND NEURAL FUNCTION, 2002, : 285 - 296
  • [44] Sparse hidden units activation in Restricted Boltzmann Machine
    Tomczak, Jakub M.
    Gonczarek, Adam
    [J]. PROGRESS IN SYSTEMS ENGINEERING, 2015, 366 : 181 - 185
  • [45] Restricted Boltzmann machine as an aggregation technique for binary descriptors
    Szymon Sobczak
    Rafal Kapela
    Kevin McGuinness
    Aleksandra Swietlicka
    Dariusz Pazderski
    Noel E. O’Connor
    [J]. The Visual Computer, 2021, 37 : 423 - 432
  • [46] MODELING HUMAN MOTION BASED ON RESTRICTED BOLTZMANN MACHINE
    Zhu, Bang-Pei
    Yang, Jie
    [J]. ENERGY AND MECHANICAL ENGINEERING, 2016, : 1290 - 1297
  • [47] Dynamic Link Prediction Using Restricted Boltzmann Machine
    Yu, Xuecheng
    Chu, Tianguang
    [J]. 2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 4089 - 4092
  • [48] Class sparsity signature based Restricted Boltzmann Machine
    Sankaran, Anush
    Goswami, Gaurav
    Vatsa, Mayank
    Singh, Richa
    Majumdar, Angshul
    [J]. PATTERN RECOGNITION, 2017, 61 : 674 - 685
  • [49] A Structure of Restricted Boltzmann Machine for Modeling System Dynamics
    Padiolleau, Guillaume
    Bach, Olivier
    Hugget, Alain
    Penninckx, Denis
    Alexandre, Frederic
    [J]. 2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [50] Fuzzy Restricted Boltzmann Machine for the Enhancement of Deep Learning
    Chen, C. L. Philip
    Zhang, Chun-Yang
    Chen, Long
    Gan, Min
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2015, 23 (06) : 2163 - 2173