To address unmet needs in the area of controlled delivery, we introduced a nanocomposite material, plasmon resonant gold-coated liposomes. We previously showed that gold-coated liposomes display plasmon resonance that is tunable in the near-infrared range and are capable of light induced content release. The plasmon resonant structure facilitates rapid content release when illuminated with laser light at wavelengths that correspond to the spectral position of the resonance band. Here, we demonstrate optical trapping of gold-coated liposomes that allows for controlled movement of these liposomes within a biological sample. Furthermore, we computationally refined this experimental system with the potential for delivery and localized release of an encapsulated agent with high spatial and temporal resolution. Full development of this technology will enable accurate perturbation of cellular functions in response to released compounds, with applications in signaling pathway research and drug discovery.