Hyperbolic secants yield Gabor frames

被引:53
作者
Janssen, AJEM [1 ]
Strohmer, T
机构
[1] Philips Res Labs WY81, NL-5656 AA Eindhoven, Netherlands
[2] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
Gabor frame; Zak transform; hyperbolic secant; theta functions;
D O I
10.1006/acha.2001.0376
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that (g(2), a, b) is a Gabor frame when a > 0, b > 0, ab < 1, and g(2)(t) = 1/2 pi gamma)(1/2) (cosh pigammat)(-1) is a hyperbolic secant with scaling parameter gamma > 0. This i s accomplished by expressing the Zak transform of g(2) in terms of the Zak transform of the Gaussian g(1)(t) = (2gamma)(1/4)exp(-pigammat(2)), together with an appropriate use of the Ron-Shen criterion for being a Gabor frame. As a side result it follows that the windows, generating tight Gabor frames, that are canonically associated to g(1) and g(2) are the same at critical density a = b = 1. Also, we display the "singular" dual function corresponding to the hyperbolic secant at critical density. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:259 / 267
页数:9
相关论文
共 11 条
[1]   GABOR EXPANSION OF A SIGNAL INTO GAUSSIAN ELEMENTARY SIGNALS [J].
BASTIAANS, MJ .
PROCEEDINGS OF THE IEEE, 1980, 68 (04) :538-539
[2]   THE WAVELET TRANSFORM, TIME-FREQUENCY LOCALIZATION AND SIGNAL ANALYSIS [J].
DAUBECHIES, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (05) :961-1005
[3]  
Daubechies I., 1992, CBMS NSF REG C SERIE
[4]  
Feichtinger H. G., 1998, GABOR ANAL ALGORITHM
[5]  
Grochenig K., 2001, Foundations of Time-Frequency Analysis, DOI DOI 10.1007/978-1-4612-0003-1
[6]   WEIGHTED WIGNER DISTRIBUTIONS VANISHING ON LATTICES [J].
JANSSEN, AJEM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1981, 80 (01) :156-167
[7]  
Janssen AJEM, 1998, APPL NUM HARM ANAL, P33
[8]   BARGMANN TRANSFORM, ZAK TRANSFORM, AND COHERENT STATES [J].
JANSSEN, AJEM .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (05) :720-731
[9]   Weyl-Heisenberg frames and Riesz bases in L-2(IRd) [J].
Ron, A ;
Shen, ZW .
DUKE MATHEMATICAL JOURNAL, 1997, 89 (02) :237-282
[10]  
Whittaker E. T., 1962, A Course of Modern Analysis