The transient, A-type K+ current (I-A) controls the excitability of CA1 pyramidal neuron dendrites by regulating the back-propagation of action potentials and by shaping synaptic input. Dendritic A-type K+ channels are targeted for modulation during long-term potentiation (LTP) and we have recently shown that activity-dependent internalization of the A-type channel subunit Kv4.2 enhances synaptic currents. However, the effect of changes in I-A on the ability to induce subsequent synaptic plasticity (metaplasticity) has not been investigated. Here, we show that altering functional Kv4.2 expression level leads to a rapid, bidirectional remodeling of CA1 synapses. Neurons exhibiting enhanced I-A showed a decrease in relative synaptic NR2B/NR2A subunit composition and did not exhibit LTP. Conversely, reducing I-A by expression of a Kv4.2 dominant-negative or through genomic knockout of Kv4.2 led to an increased fraction of synaptic NR2B/NR2A and enhanced LTP. Bidirectional synaptic remodeling was mimicked in experiments manipulating intracellular Ca2+ and dependent on spontaneous activation of NMDA receptors and CaMKII activity. Our data suggest that A-type K+ channels are an integral part of a synaptic complex that regulates Ca2+ signaling through spontaneous NIVIDAR activation to control synaptic NIVIDAR expression and plasticity.
机构:Univ Calif San Francisco, Dept Mol & Cellular Pharmacol, San Francisco, CA 94143 USA
Bellone, Camilla
Nicoll, Roger A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Francisco, Dept Mol & Cellular Pharmacol, San Francisco, CA 94143 USAUniv Calif San Francisco, Dept Mol & Cellular Pharmacol, San Francisco, CA 94143 USA
机构:Univ Calif San Francisco, Dept Mol & Cellular Pharmacol, San Francisco, CA 94143 USA
Bellone, Camilla
Nicoll, Roger A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Francisco, Dept Mol & Cellular Pharmacol, San Francisco, CA 94143 USAUniv Calif San Francisco, Dept Mol & Cellular Pharmacol, San Francisco, CA 94143 USA