Discrete Hopf bifurcation for Runge-Kutta methods

被引:7
作者
Christodoulou, Nikolaos S. [1 ]
机构
[1] TEI Chalkis, Sch Technol Applicat STEF, Gen Dept Appl Sci, GR-34400 Psahna, Greece
关键词
Bifurcation problems; Hopf bifurcation; Computational methods for bifurcation problems; Attractors and their bifurcations;
D O I
10.1016/j.amc.2008.09.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An investigation into how well real bifurcations in the family of dynamical systems are approximated as the step-size varies is carried out. The preservation of bifurcation structures and stability under numerical simulations is discussed. In addition, the behaviour of numerical solutions generated by a Runge-Kutta method applied to a dynamical system whose analytical solution undergoes a Hopf bifurcation is investigated. Hopf bifurcation results for the numerical solution are presented and analysed. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:346 / 356
页数:11
相关论文
共 8 条
[1]   STABILITY-CRITERIA FOR IMPLICIT RUNGE-KUTTA METHODS [J].
BURRAGE, K ;
BUTCHER, JC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (01) :46-57
[2]  
CHRISTODOULOU NS, 2002, THESIS U SUSSEX
[3]  
Guckenheimer J., 2013, APPL MATH SCI, V42, DOI 10.1007/978-1-4612-1140-2
[4]   A UNIFIED APPROACH TO SPURIOUS SOLUTIONS INTRODUCED BY TIME DISCRETIZATION .1. BASIC THEORY [J].
ISERLES, A ;
PEPLOW, AT ;
STUART, AM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (06) :1723-1751
[5]   CANONICAL RUNGE-KUTTA METHODS [J].
LASAGNI, FM .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1988, 39 (06) :952-953
[6]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[7]  
2
[8]   RUNGE-KUTTA SCHEMES FOR HAMILTONIAN-SYSTEMS [J].
SANZSERNA, JM .
BIT, 1988, 28 (04) :877-883