NLCMAP: A FRAMEWORK FOR THE EFFICIENT MAPPING OF NON-LINEAR CONVOLUTIONAL NEURAL NETWORKS ON FPGA ACCELERATORS

被引:0
作者
Aiello, Giuseppe [1 ]
Bussolino, Beatrice [1 ]
Valpreda, Emanuele [1 ]
Roch, Massimo Ruo [1 ]
Masera, Guido [1 ]
Martina, Maurizio [1 ]
Marsi, Stefano [2 ]
机构
[1] Politecnico Torino, Dept Elect & Telecommun, Turin, Italy
[2] Univ Trieste, Dept Engn & Architecture, Trieste, Italy
来源
2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP | 2022年
关键词
Non-linear signal processing; Convolutional Neural Networks; Dataflow; HW Mapping;
D O I
10.1109/ICIP46576.2022.9897288
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces NLCMap, a framework for the mapping space exploration targeting Non-Linear Convolutional Networks (NLCNs). NLCNs [1] are a novel neural network model that improves performances in certain computer vision applications by introducing a non-linearity in the weights computation. NLCNs are more challenging to efficiently map onto hardware accelerators if compared to traditional Convolutional Neural Networks (CNNs), due to data dependencies and additional computations. To this aim, we propose NLCMap, a framework that, given an NLC layer and a generic hardware accelerator with a certain on-chip memory budget, finds the optimal mapping that minimizes the accesses to the off-chip memory, which are often the critical aspect in CNNs acceleration.
引用
收藏
页码:926 / 930
页数:5
相关论文
共 16 条
[1]   Hardware and Software Optimizations for Accelerating Deep Neural Networks: Survey of Current Trends, Challenges, and the Road Ahead [J].
Capra, Maurizio ;
Bussolino, Beatrice ;
Marchisio, Alberto ;
Masera, Guido ;
Martina, Maurizio ;
Shafique, Muhammad .
IEEE ACCESS, 2020, 8 :225134-225180
[2]   TETRIS: Scalable and efficient neural network acceleration with 3D memory [J].
Gao M. ;
Pu J. ;
Yang X. ;
Horowitz M. ;
Kozyrakis C. .
ACM SIGPLAN Notices, 2017, 52 (04) :751-764
[3]   FlexFlow: A Flexible Dataflow Accelerator Architecture for Convolutional Neural Networks [J].
Lu, Wenyan ;
Yan, Guihai ;
Li, Jiajun ;
Gong, Shijun ;
Han, Yinhe ;
Li, Xiaowei .
2017 23RD IEEE INTERNATIONAL SYMPOSIUM ON HIGH PERFORMANCE COMPUTER ARCHITECTURE (HPCA), 2017, :553-564
[4]   A Non-Linear Convolution Network for Image Processing [J].
Marsi, Stefano ;
Bhattacharya, Jhilik ;
Molina, Romina ;
Ramponi, Giovanni .
ELECTRONICS, 2021, 10 (02) :1-21
[5]   Timeloop: A Systematic Approach to DNN Accelerator Evaluation [J].
Parashar, Angshuman ;
Raina, Priyanka ;
Shao, Yakun Sophia ;
Chen, Yu-Hsin ;
Ying, Victor A. ;
Mukkara, Anurag ;
Venkatesan, Rangharajan ;
Khailany, Brucek ;
Keckler, Stephen W. ;
Emer, Joel .
2019 IEEE INTERNATIONAL SYMPOSIUM ON PERFORMANCE ANALYSIS OF SYSTEMS AND SOFTWARE (ISPASS), 2019, :304-315
[6]  
Shao YKS, 2019, MICRO'52: THE 52ND ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE, P14, DOI 10.1145/3352460.3358302
[7]   Maximizing CNN Accelerator Efficiency Through Resource Partitioning [J].
Shen, Yongming ;
Ferdman, Michael ;
Milder, Peter .
44TH ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE (ISCA 2017), 2017, :535-547
[8]   HyPar: Towards Hybrid Parallelism for Deep Learning Accelerator Array [J].
Song, Linghao ;
Mao, Jiachen ;
Zhuo, Youwei ;
Qian, Xuehai ;
Li, Hai ;
Chen, Yiran .
2019 25TH IEEE INTERNATIONAL SYMPOSIUM ON HIGH PERFORMANCE COMPUTER ARCHITECTURE (HPCA), 2019, :56-68
[9]   Towards Efficient Microarchitectural Design for Accelerating Unsupervised GAN-based Deep Learning [J].
Song, Mingcong ;
Zhang, Jiaqi ;
Chen, Huixiang ;
Li, Tao .
2018 24TH IEEE INTERNATIONAL SYMPOSIUM ON HIGH PERFORMANCE COMPUTER ARCHITECTURE (HPCA), 2018, :66-77
[10]  
Stoutchinin A., 2019, CORR