Heterogeneous Graph Neural Network with Hypernetworks for Knowledge Graph Embedding

被引:2
|
作者
Liu, Xiyang [1 ]
Zhu, Tong [1 ]
Tan, Huobin [1 ]
Zhang, Richong [2 ]
机构
[1] Beihang Univ, Sch Software, Beijing, Peoples R China
[2] Beihang Univ, Sch Comp Sci & Engn, SKLSDE, Beijing, Peoples R China
来源
SEMANTIC WEB - ISWC 2022 | 2022年 / 13489卷
关键词
Knowledge graph embedding; Link prediction; Heterogeneous graph neural network;
D O I
10.1007/978-3-031-19433-7_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Heterogeneous graph neural network (HGNN) has drawn considerable research attention in recent years. Knowledge graphs contain hundreds of distinct relations, showing the intrinsic property of strong heterogeneity. However, the majority of HGNNs characterize the heterogeneities by learning separate parameters for different types of nodes and edges in latent space. The number of type-related parameters will be explosively increased when HGNNs attempt to process knowledge graphs, making HGNNs only applicable for graphs with fewer edge types. In this work, to overcome such limitation, we propose a novel heterogeneous graph neural network incorporated with hypernetworks that generate the required parameters by modeling the general semantics among relations. Specifically, we exploit hypernetworks to generate relation-specific parameters of a convolution-based message function to improve the model's performance while maintaining parameter efficiency. The empirical study on the most commonly-used knowledge base embedding datasets confirms the effectiveness and efficiency of the proposed model. Furthermore, the model parameters have been shown to be significantly reduced (from 415M to 3M on FB15k-237 and from 13M to 4M on WN18RR).
引用
收藏
页码:284 / 302
页数:19
相关论文
共 50 条
  • [1] Decoupled semantic graph neural network for knowledge graph embedding
    Li, Zhifei
    Huang, Wei
    Gong, Xuchao
    Luo, Xiangyu
    Xiao, Kui
    Deng, Honglian
    Zhang, Miao
    Zhang, Yan
    NEUROCOMPUTING, 2025, 611
  • [2] Semantic-guided graph neural network for heterogeneous graph embedding
    Han, Mingjing
    Zhang, Han
    Li, Wei
    Yin, Yanbin
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 232
  • [3] MAGNN: Metapath Aggregated Graph Neural Network for Heterogeneous Graph Embedding
    Fu, Xinyu
    Zhang, Jiani
    Men, Ziqiao
    King, Irwin
    WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, : 2331 - 2341
  • [4] PHGNN: Position-aware Graph Neural Network for Heterogeneous Graph Embedding
    Yang, Hangjun
    Li, Linsen
    Zhang, Lingxuan
    Tang, Junhua
    Chen, Zhongwei
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [5] Multisource hierarchical neural network for knowledge graph embedding
    Jiang, Dan
    Wang, Ronggui
    Xue, Lixia
    Yang, Juan
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237
  • [6] HeMGNN: Heterogeneous Network Embedding Based on a Mixed Graph Neural Network
    Zhong, Hongwei
    Wang, Mingyang
    Zhang, Xinyue
    ELECTRONICS, 2023, 12 (09)
  • [7] Knowledge Graph Enhanced Heterogeneous Graph Neural Network for Fake News Detection
    Xie, Bingbing
    Ma, Xiaoxiao
    Wu, Jia
    Yang, Jian
    Fan, Hao
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 2826 - 2837
  • [8] Entity-relation aggregation mechanism graph neural network for knowledge graph embedding
    Xu, Guoshun
    Rao, Guozheng
    Zhang, Li
    Cong, Qing
    APPLIED INTELLIGENCE, 2025, 55 (01)
  • [9] Multiview feature augmented neural network for knowledge graph embedding
    Jiang, Dan
    Wang, Ronggui
    Xue, Lixia
    Yang, Juan
    KNOWLEDGE-BASED SYSTEMS, 2022, 255
  • [10] A Triple-Branch Neural Network for Knowledge Graph Embedding
    Han, Xiao
    Zhang, Chunhong
    Sun, Tingting
    Ji, Yang
    Hu, Zheng
    IEEE ACCESS, 2018, 6 : 76606 - 76615