A spiking neuron circuit based on a carbon nanotube transistor

被引:28
作者
Chen, C-L [1 ]
Kim, K. [1 ]
Truong, Q. [1 ]
Shen, A. [1 ]
Li, Z. [1 ]
Chen, Y. [1 ]
机构
[1] Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA
关键词
Yarn - Neurons - Carbon nanotube field effect transistors - Polyethylene glycols - Carbon nanotubes - Refractory metal compounds - Timing circuits - Electrochemical electrodes;
D O I
10.1088/0957-4484/23/27/275202
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A spiking neuron circuit based on a carbon nanotube (CNT) transistor is presented in this paper. The spiking neuron circuit has a crossbar architecture in which the transistor gates are connected to its row electrodes and the transistor sources are connected to its column electrodes. An electrochemical cell is incorporated in the gate of the transistor by sandwiching a hydrogen-doped poly(ethylene glycol) methyl ether (PEG) electrolyte between the CNT channel and the top gate electrode. An input spike applied to the gate triggers a dynamic drift of the hydrogen ions in the PEG electrolyte, resulting in a post-synaptic current (PSC) through the CNT channel. Spikes input into the rows trigger PSCs through multiple CNT transistors, and PSCs cumulate in the columns and integrate into a 'soma' circuit to trigger output spikes based on an integrate-and-fire mechanism. The spiking neuron circuit can potentially emulate biological neuron networks and their intelligent functions.
引用
收藏
页数:6
相关论文
共 19 条
[1]   Functionalized Carbon Nanotube Networks with Field-Tunable Bandgaps [J].
Ahn, Yong Sik ;
Kim, Kyunghyun ;
Park, Hee Kun ;
Hahn, H. Thomas ;
Chen, Yong .
ADVANCED MATERIALS, 2011, 23 (27) :3075-+
[2]   An Organic Nanoparticle Transistor Behaving as a Biological Spiking Synapse [J].
Alibart, Fabien ;
Pleutin, Stephane ;
Guerin, David ;
Novembre, Christophe ;
Lenfant, Stephane ;
Lmimouni, Kamal ;
Gamrat, Christian ;
Vuillaume, Dominique .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (02) :330-337
[3]   Logic circuits with carbon nanotube transistors [J].
Bachtold, A ;
Hadley, P ;
Nakanishi, T ;
Dekker, C .
SCIENCE, 2001, 294 (5545) :1317-1320
[4]   Enzyme-coated carbon nanotubes as single-molecule biosensors [J].
Besteman, K ;
Lee, JO ;
Wiertz, FGM ;
Heering, HA ;
Dekker, C .
NANO LETTERS, 2003, 3 (06) :727-730
[5]   Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons [J].
Castillo, PE ;
Malenka, RC ;
Nicoll, RA .
NATURE, 1997, 388 (6638) :182-186
[6]   Carbon nanotube memory devices of high charge storage stability [J].
Cui, JB ;
Sordan, R ;
Burghard, M ;
Kern, K .
APPLIED PHYSICS LETTERS, 2002, 81 (17) :3260-3262
[7]   Fast sensory motor control based on event-based hybrid neuromorphic-procedural system [J].
Delbruck, T. ;
Lichtsteiner, P. .
2007 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-11, 2007, :845-848
[8]  
DOUGLAS R, 1995, ANNU REV NEUROSCI, V18, P255, DOI 10.1146/annurev.neuro.18.1.255
[9]   VARIATIONS IN AMPLITUDE AND TIME COURSE OF INHIBITORY POSTSYNAPTIC CURRENTS [J].
GARDNER, D .
JOURNAL OF NEUROPHYSIOLOGY, 1986, 56 (05) :1424-1438
[10]   A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity [J].
Indiveri, G ;
Chicca, E ;
Douglas, R .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2006, 17 (01) :211-221