Preparation and characterization of collagen-nanohydroxyapatite biocomposite scaffolds by cryogelation method for bone tissue engineering applications

被引:100
作者
Rodrigues, Sandra C. [1 ,2 ]
Salgado, Christiane L. [1 ,2 ]
Sahu, Abhishek [1 ,2 ]
Garcia, Monica P. [3 ]
Fernandes, Maria H. [3 ]
Monteiro, Fernando J. [1 ,2 ]
机构
[1] Univ Porto, INEB Inst Engn Biomed, P-4150180 Oporto, Portugal
[2] Univ Porto, Fac Engn FEUP, Dept Engn Met & Mat, P-4200465 Oporto, Portugal
[3] Univ Porto FMDUP, Lab Farmacol & Biocompatibilidade Celular, Fac Med Dent, P-4200393 Oporto, Portugal
关键词
biomaterials; bone tissue engineering; cryogels; nanohydroxyapatite; collagen; AGAROSE-GELATIN CRYOGELS; MECHANICAL-PROPERTIES; OSTEOBLAST ADHESION; IN-VIVO; NANO-HYDROXYAPATITE; COMPOSITE SCAFFOLDS; POLYMERIC CRYOGELS; CELLS; BIOCOMPATIBILITY; VASCULARIZATION;
D O I
10.1002/jbm.a.34394
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Recent efforts of bone repair focus on development of porous scaffolds for cell adhesion and proliferation. Collagen-nanohydroxyapatite (HA) scaffolds (70:30; 50:50; and 30:70 mass percentage) were produced by cryogelation technique using 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide hydrochloride/N-hydroxysuccinimide as crosslinking agents. A pure collagen scaffold was used as control. Morphology analysis revealed that all cryogels had highly porous structure with interconnective porosity and the nanoHA aggregates were randomly dispersed throughout the scaffold structure. Chemical analysis showed the presence of all major peaks related to collagen and HA in the biocomposites and indicated possible interaction between nanoHA aggregates and collagen molecules. Porosity analysis revealed an enhancement in the surface area as the nanoHA percentage increased in the collagen structure. The biocomposites showed improved mechanical properties as the nanoHA content increased in the scaffold. As expected, the swelling capacity decreased with the increase of nanoHA content. In vitro studies with osteoblasts cells showed that they were able to attach and spread in all cryogels surfaces. The presence of collagen-nanoHA biocomposites resulted in higher overall cellular proliferation compared to pure collagen scaffold. A statistically significant difference between collagen and collagen-nanoHA cryogels was observed after 21 day of cell culture. These innovative collagen-nanoHA cryogels could have potentially appealing application as scaffolds for bone regeneration. (c) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2013.
引用
收藏
页码:1080 / 1094
页数:15
相关论文
共 50 条
  • [41] Reinforced nanohydroxyapatite/polyamide66 scaffolds by chitosan coating for bone tissue engineering
    Huang, Di
    Zuo, Yi
    Zou, Qin
    Wang, Yanying
    Gao, Shibo
    Wang, Xiaoyan
    Liu, Haohuai
    Li, Yubao
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2012, 100B (01) : 51 - 57
  • [42] Optimizing Chitosan/Collagen Type I/Nanohydroxyapatite Cross-linked Porous Scaffolds for Bone Tissue Engineering
    Ayşe Karakeçili
    Serdar Korpayev
    Kaan Orhan
    Applied Biochemistry and Biotechnology, 2022, 194 : 3843 - 3859
  • [43] Preparation and Characterization of Freeze-Dried β-Tricalcium Phosphate/Barium Titanate/Collagen Composite Scaffolds for Bone Tissue Engineering in Orthopedic Applications
    Putra, Dwi Fortuna Anjusa
    Aji, Bramantyo Bayu
    Ningsih, Henni Setia
    Wu, Ting-Wei
    Nakanishi, Akihiro
    Moriga, Toshihiro
    Shih, Shao-Ju
    CERAMICS-SWITZERLAND, 2023, 6 (04): : 2148 - 2161
  • [44] Preparation and characterization of nanohydroxyapatite strengthening nanofibrous poly(L-lactide) scaffold for bone tissue engineering
    Han, Wanqing
    Zhao, Jianhao
    Tu, Mei
    Zeng, Rong
    Zha, Zhengang
    Zhou, Changren
    JOURNAL OF APPLIED POLYMER SCIENCE, 2013, 128 (03) : 1332 - 1338
  • [45] Bioceramics/Electrospun Polymeric Nanofibrous and Carbon Nanofibrous Scaffolds for Bone Tissue Engineering Applications
    Dibazar, Zahra Ebrahimvand
    Nie, Lei
    Azizi, Mehdi
    Nekounam, Houra
    Hamidi, Masoud
    Shavandi, Amin
    Izadi, Zhila
    Delattre, Cedric
    MATERIALS, 2023, 16 (07)
  • [46] Nanohydroxyapatite Incorporated Electrospun Polycaprolactone/Polycaprolactone-Polyethyleneglycol-Polycaprolactone Blend Scaffold for Bone Tissue Engineering Applications
    Remya, K. R.
    Joseph, Jasmin
    Mani, Susan
    John, Annie
    Varma, H. K.
    Ramesh, P.
    JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2013, 9 (09) : 1483 - 1494
  • [47] Fabrication and characterization of biomimetic collagen-apatite scaffolds with tunable structures for bone tissue engineering
    Xia, Zengmin
    Yu, Xiaohua
    Jiang, Xi
    Brody, Harold D.
    Rowe, David W.
    Wei, Mei
    ACTA BIOMATERIALIA, 2013, 9 (07) : 7308 - 7319
  • [48] Hardystonite-diopside nanocomposite scaffolds for bone tissue engineering applications
    Sadeghzade, Sorour
    Emadi, Rahmatollah
    Labbaf, Sheyda
    MATERIALS CHEMISTRY AND PHYSICS, 2017, 202 : 95 - 103
  • [49] Fabrication and in vitro characterization of novel co-electrospun polycaprolactone/collagen/polyvinylpyrrolidone nanofibrous scaffolds for bone tissue engineering applications
    Elahe Gholipour Choubar
    Mohammad Hossein Nasirtabrizi
    Farshid Salimi
    Nastaran Sohrabi-gilani
    Ali Sadeghianamryan
    Journal of Materials Research, 2022, 37 : 4140 - 4152
  • [50] 3D printed scaffolds with random microarchitecture for bone tissue engineering applications: Manufacturing and characterization
    Pecci, Raffaella
    Baiguera, Silvia
    Ioppolo, Pietro
    Bedini, Rossella
    Del Gaudio, Costantino
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2020, 103 (103)