Spanning Cycles Through Specified Edges in Bipartite Graphs

被引:5
作者
Zamani, Reza [1 ]
West, Douglas B. [2 ]
机构
[1] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
Geometry;
D O I
10.1002/jgt.20627
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Posa proved that if G is an n-vertex graph in which any two nonadjacent vertices have degree-sum at least n + k, then G has a spanning cycle containing any specified family of disjoint paths with a total of k edges. We consider the analogous problem for a bipartite graph G with n vertices and parts of equal size. Let F be a subgraph of G whose components are nontrivial paths. Let k be the number of edges in F, and let t1 and t2 be the numbers of components of F having odd and even length, respectively. We prove that G has a spanning cycle containing F if any two nonadjacent vertices in opposite partite sets have degree-sum at least n/2 + tau(F), where tau(F) = tau k/2? + epsilon (here epsilon = 1 if t1 = 0 or if (t1, t2)epsilon{(1, 0), (2, 0)}, and epsilon = 0 otherwise). We show also that this threshold on the degree-sum is sharp when n>3k. (c) 2011 Wiley Periodicals, Inc. J Graph Theory 71:117, 2012
引用
收藏
页码:1 / 17
页数:17
相关论文
共 10 条
[1]   Bipartite graphs with every matching in a cycle [J].
Amar, Denise ;
Flandrin, Evelyne ;
Gancarzewicz, Grzegorz ;
Wojda, A. Pawel .
DISCRETE MATHEMATICS, 2007, 307 (11-12) :1525-1537
[2]  
[Anonymous], 1972, Journal of combinatorial theory, DOI DOI 10.1016/0095-8956(72)90020-2
[3]  
Dirac G. A., 1952, P LOND MATH SOC, V3, P171
[4]   Pancyclic graphs and linear forests [J].
Faudree, Ralph J. ;
Gould, Ronald J. ;
Jacobson, Michael S. .
DISCRETE MATHEMATICS, 2009, 309 (05) :1178-1189
[5]   A look at cycles containing specified elements of a graph [J].
Gould, Ronald J. .
DISCRETE MATHEMATICS, 2009, 309 (21) :6299-6311
[6]  
HAGGKVIST R, 1979, GRAPH THEORY RELATED, P219
[7]   ON HAMILTONIAN BIPARTITE GRAPHS [J].
MOON, J ;
MOSER, L .
ISRAEL JOURNAL OF MATHEMATICS, 1963, 1 (03) :163-&
[8]  
Ore O., 1960, Amer. Math. Monthly, V67, P55, DOI [10.2307/2308928, DOI 10.2307/2308928]
[9]  
Posa L., 1963, Magyar Tud. Akad. Mat. Kutato Int. Kozl, V8, P355
[10]  
Vergnas M. Las, 1972, THESIS U PARIS PARIS