Determinant and Weyl anomaly of the Dirac operator: a holographic derivation

被引:16
作者
Aros, R. [1 ]
Diaz, D. E. [1 ]
机构
[1] Univ Andres Bello, Fac Ciencias Exactas, Dept Ciencias Fis, Santiago, Chile
关键词
BARNES ZETA-FUNCTION; THEORY CORRELATORS; DIFFEOMORPHISMS;
D O I
10.1088/1751-8113/45/12/125401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a holographic formula relating functional determinants: the fermion determinant in the one-loop effective action of bulk spinors in an asymptotically locally AdS background and the determinant of the two-point function of the dual operator at the conformal boundary. The formula originates from AdS/CFT heuristics that map a quantum contribution in the bulk partition function to a subleading large-N contribution in the boundary partition function. We use this holographic picture to address questions in spectral theory and conformal geometry. As an instance, we compute the type-A Weyl anomaly and the determinant of the iterated Dirac operator on round spheres, express the latter in terms of Barnes' multiple gamma function and gain insight into a conjecture by Bar and Schopka.
引用
收藏
页数:11
相关论文
共 54 条
[1]  
Albin P, 2005, ARXIVMATHDG0504161
[2]   Double-trace deformations, holography and the c-conjecture [J].
Allais, Andrea .
JOURNAL OF HIGH ENERGY PHYSICS, 2010, (11)
[3]  
[Anonymous], 1985, ASTERISQUE
[4]  
[Anonymous], ARXIV10093854HEPTH
[5]  
[Anonymous], HEPTH9805114
[6]   A note on a gauge-gravity relation and functional determinants [J].
Aros, R. ;
Diaz, D. E. ;
Montecinos, A. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (29)
[7]   Functional determinants, generalized BTZ geometries and Selberg zeta function [J].
Aros, R. ;
Diaz, D. E. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (20)
[8]   Conformal gravity from the AdS/CFT mechanism [J].
Aros, Rodrigo ;
Romo, Mauricio ;
Zamorano, Nelson .
PHYSICAL REVIEW D, 2007, 75 (06)
[9]   On the origin of supergravity boundary terms in the AdS/CFT correspondence [J].
Arutyunov, GE ;
Frolov, SA .
NUCLEAR PHYSICS B, 1999, 544 (03) :576-589
[10]  
Banerjee N., 1998, ADV THEORET MATH PHY