Gluing affine torus actions via divisorial fans

被引:58
作者
Altmann, Klaus [1 ]
Hausen, Juergen [2 ]
Suess, Hendrik [3 ]
机构
[1] Free Univ Berlin, Fachbereich Math & Informat, D-14195 Berlin, Germany
[2] Univ Tubingen, Math Inst, D-72076 Tubingen, Germany
[3] Brandenburg Tech Univ Cottbus, Inst Math LS Algebra & Geometrie, D-03013 Cottbus, Germany
关键词
Vector Bundle; Toric Variety; Prime Divisor; Cotangent Bundle; Global Section;
D O I
10.1007/s00031-008-9011-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Generalizing the passage from a fan to a toric variety, we provide a combinatorial approach to construct arbitrary effective torus actions on normal, algebraic varieties. Based on the notion of a "proper polyhedral divisor" introduced in earlier work, we develop the concept of a "divisorial fan" and show that these objects encode the equivariant gluing of affine varieties with torus action. We characterize separateness and completeness of the resulting varieties in terms of divisorial fans, and we study examples like C*-surfaces and projectivizations of (nonsplit) vector bundles over toric varieties.
引用
收藏
页码:215 / 242
页数:28
相关论文
共 9 条
[1]   Polyhedral divisors and algebraic torus actions [J].
Altmann, K ;
Hausen, J .
MATHEMATISCHE ANNALEN, 2006, 334 (03) :557-607
[2]  
[Anonymous], 1973, Lecture Notes in Mathematics
[3]  
FLENNER H., 2007, AFFINE ALGEBRAIC GEO, P149
[4]  
HARTSHORNE R, 1977, GRADUATE TEXTS MATH, V52
[5]  
HAUSEN J, INT J MATH IN PRESS
[6]  
Klyachko AA., 1990, MATH USSR IZV+, V35, P337, DOI DOI 10.1070/IM1990V035N02ABEH000707
[7]   Graded rings and equivariant sheaves on toric varieties [J].
Perling, M .
MATHEMATISCHE NACHRICHTEN, 2004, 263 :181-197
[8]  
Sumihiro H., 1974, J. Math. Kyoto Univ, V14, P1, DOI [10.1215/kjm/1250523277, DOI 10.1215/KJM/1250523277]
[9]  
VOLLMERT R, ARXIVMATHAG07070917V