Nanogenerator for Biomedical Applications

被引:163
作者
Feng, Hongqing [1 ,2 ]
Zhao, Chaochao [1 ,2 ]
Tan, Puchuan [1 ,2 ]
Liu, Ruping [3 ]
Chen, Xin [3 ]
Li, Zhou [1 ,2 ]
机构
[1] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Sch Nanosci & Technol, Beijing 100049, Peoples R China
[3] Beijing Inst Graph Commun, Beijing 102600, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
biomedical applications; healthcare electronics; nanogenerator; self-powered system; DEEP-BRAIN-STIMULATION; MESENCHYMAL STEM-CELLS; TRIBOELECTRIC NANOGENERATOR; ENERGY HARVESTERS; PIEZOELECTRIC NANOGENERATOR; NANOCOMPOSITE GENERATOR; ELECTRICAL-STIMULATION; DIRECT CONVERSION; POWER-GENERATION; IN-VITRO;
D O I
10.1002/adhm.201701298
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In the past 10 years, the development of nanogenerators (NG) has enabled different systems to operate without external power supply. NG have the ability to harvest the mechanical energies in different forms. Human body motions and activities can also serve as the energy source to drive NG and enable self-powered healthcare system. In this review, a summary of several major actual applications of NG in the biomedical fields is made including the circulatory system, the neural system, cell modulation, microbe disinfection, and biodegradable electronics. Nevertheless, there are still many challenges for NG to be actually adopted in clinical applications, including the miniaturization, duration, encapsulation, and output performance. It is also very important to further combine the NG development more precisely with the medical principles. In future, NG can serve as highly promising complementary or even alternative power suppliers to traditional batteries for the healthcare electronics.
引用
收藏
页数:18
相关论文
共 92 条
[1]   Cylindrical Rotating Triboelectric Nanogenerator [J].
Bai, Peng ;
Zhu, Guang ;
Liu, Ying ;
Chen, Jun ;
Jing, Qingshen ;
Yang, Weiqing ;
Ma, Jusheng ;
Zhang, Gong ;
Wang, Zhong Lin .
ACS NANO, 2013, 7 (07) :6361-6366
[2]   Power Approaches for Implantable Medical Devices [J].
Ben Amar, Achraf ;
Kouki, Ammar B. ;
Cao, Hung .
SENSORS, 2015, 15 (11) :28889-28914
[3]   Energy harvesting for assistive and mobile applications [J].
Bhatnagar, Vikrant ;
Owende, Philip .
ENERGY SCIENCE & ENGINEERING, 2015, 3 (03) :153-173
[4]   Opinion - Spinal cord repair strategies: why do they work? [J].
Bradbury, Elizabeth J. ;
McMahon, Stephen B. .
NATURE REVIEWS NEUROSCIENCE, 2006, 7 (08) :644-653
[5]   Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care [J].
Chen, Lisa Y. ;
Tee, Benjamin C. -K. ;
Chortos, Alex L. ;
Schwartz, Gregor ;
Tse, Victor ;
Lipomi, Darren J. ;
Wong, H. -S. Philip ;
McConnell, Michael V. ;
Bao, Zhenan .
NATURE COMMUNICATIONS, 2014, 5
[6]   High-Performance Piezoelectric Nanogenerators with Imprinted P(VDF-TrFE)/BaTiO3 Nanocomposite Micropillars for Self-Powered Flexible Sensors [J].
Chen, Xiaoliang ;
Li, Xiangming ;
Shao, Jinyou ;
An, Ningli ;
Tian, Hongmiao ;
Wang, Chao ;
Han, Tianyi ;
Wang, Li ;
Lu, Bingheng .
SMALL, 2017, 13 (23)
[7]   Implantable and self-powered blood pressure monitoring based on a piezoelectric thinfilm: Simulated, in vitro and in vivo studies [J].
Cheng, Xiaoliang ;
Xue, Xiang ;
Ma, Ye ;
Han, Mengdi ;
Zhang, Wei ;
Xu, Zhiyun ;
Zhang, Hao ;
Zhang, Haixia .
NANO ENERGY, 2016, 22 :453-460
[8]   Energy Harvesting from the Animal/Human Body for Self-Powered Electronics [J].
Dagdeviren, Canan ;
Li, Zhou ;
Wang, Zhong Lin .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, VOL 19, 2017, 19 :85-108
[9]  
Dagdeviren C, 2015, NAT MATER, V14, P728, DOI [10.1038/NMAT4289, 10.1038/nmat4289]
[10]   Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm [J].
Dagdeviren, Canan ;
Yang, Byung Duk ;
Su, Yewang ;
Tran, Phat L. ;
Joe, Pauline ;
Anderson, Eric ;
Xia, Jing ;
Doraiswamy, Vijay ;
Dehdashti, Behrooz ;
Feng, Xue ;
Lu, Bingwei ;
Poston, Robert ;
Khalpey, Zain ;
Ghaffari, Roozbeh ;
Huang, Yonggang ;
Slepian, Marvin J. ;
Rogers, John A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (05) :1927-1932