Analytic Continuation and Semiclassical Resolvent Estimates on Asymptotically Hyperbolic Spaces

被引:18
作者
Melrose, Richard [1 ]
Barreto, Antonio Sa [2 ]
Vasy, Andras [3 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[3] Stanford Univ, Dept Math, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Analytic continuation; Asymptotically hyperbolic spaces; High-energy resolvent estimates; Semiclassical parametrix construction; 58G25; 58J40; 35P25; WAVE-EQUATION; LOCAL ENERGY; RESONANCES; DECAY;
D O I
10.1080/03605302.2013.866957
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we construct a parametrix for the high-energy asymptotics of the analytic continuation of the resolvent on a Riemannian manifold which is a small perturbation of the Poincare metric on hyperbolic space. As a result, we obtain non-trapping high energy estimates for this analytic continuation.
引用
收藏
页码:452 / 511
页数:60
相关论文
共 24 条
[1]  
[Anonymous], 2012, MSRI PUBLICATIONS
[2]  
Barreto AS, 1997, MATH RES LETT, V4, P103
[3]   Decay and non-decay of the local energy for the wave equation on the De Sitter-Schwarzschild metric [J].
Bony, Jean-Francois ;
Hafner, Dietrich .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 282 (03) :697-719
[4]   Semiclassical resolvent estimates for trapping perturbations [J].
Bruneau, V ;
Petkov, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 213 (02) :413-432
[5]   Uniform estimates of the resolvent of the Laplace-Beltrami operator on infinite volume Riemannian manifolds. II [J].
Cardoso, F ;
Vodev, G .
ANNALES HENRI POINCARE, 2002, 3 (04) :673-691
[6]  
DAFERMOS M., PREPRINT
[7]   Gluing Semiclassical Resolvent Estimates via Propagation of Singularities [J].
Datchev, Kiril ;
Vasy, Andras .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012, 2012 (23) :5409-5443
[8]  
Dimassi M., 1999, Spectral asymptotics in the semiclassical limit, V268
[9]  
GALLOT S., 2004, Riemannian Geometry., V3rd
[10]   Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds [J].
Guillarmou, C .
DUKE MATHEMATICAL JOURNAL, 2005, 129 (01) :1-37