Anisotropic spall behavior of CNT/2024Al composites under plate impact

被引:24
作者
Cheng, J. C. [1 ]
Chai, H. W. [2 ]
Fan, G. L. [3 ]
Li, Z. Q. [3 ]
Xie, H. L. [4 ]
Tan, Z. Q. [3 ]
Bie, B. X. [1 ]
Huang, J. Y. [2 ]
Luo, S. N. [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Mat Sci & Engn, Chengdu 610031, Sichuan, Peoples R China
[2] Peac Inst Multiscale Sci, Chengdu 610031, Sichuan, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
[4] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201204, Peoples R China
基金
中国国家自然科学基金;
关键词
CNT/2024Al composite; Hugoniot elastic limit; Spall strength; Computed tomography; FLAKE POWDER-METALLURGY; STRAIN-RATE; MECHANICAL-PROPERTIES; ALUMINUM; DEFORMATION; DAMAGE; FRACTURE; FOAMS; TENSILE;
D O I
10.1016/j.carbon.2020.08.007
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Plate impact experiments are conducted on the carbon nanotube (CNT) reinforced 2024Al composite fabricated by flake powder metallurgy and hot extrusion, to investigate the effects of microstructural anisotropy on its dynamic deformation and damage, as well as the role of CNTs. Three loading directions are explored with the loading axis being parallel to the extrusion, transverse or normal direction. Free-surface velocity histories are measured to evaluate the mechanical properties and damage processes, including the Hugoniot elastic limit (HEL; similar to 0.8 GPa) and dynamic spall strengths (1.4 - 1.9 GPa). Postmortem samples are characterized with synchrotron X-ray computed tomography and scanning electron microscopy. The microstructural anisotropy of the composite (in terms of the orientation of lamellar microstructures) has a negligible effect on HEL but induces an anisotropy in spall strengths; spall strength is the highest for loading along the extrusion direction, the long axis of the lamellar microstructures. CNTs appear to increase the spall strengths of the 2024Al matrix, in contrast to other reinforcing fibers/particles. The crack propagation direction and damage features can be correlated with collinear propagation of microcracks following the lamellar microstructures. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:589 / 599
页数:11
相关论文
共 63 条
  • [1] Agarwal A., 2010, CARBON NANOTUBES REI
  • [2] Characterisation of aluminium matrix syntactic foams under drop weight impact
    Altenaiji, M.
    Guan, Z. W.
    Cantwell, W. J.
    Zhao, Y.
    Schleyer, G. K.
    [J]. MATERIALS & DESIGN, 2014, 59 : 296 - 302
  • [3] [Anonymous], 1994, Dynamic Behavior of Materials, P66, DOI DOI 10.1002/9780470172278
  • [4] Antoun T., 2003, HIGH PR SH, DOI 10.1007/b97226
  • [5] An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites
    Bakshi, Srinivasa R.
    Agarwal, Arvind
    [J]. CARBON, 2011, 49 (02) : 533 - 544
  • [6] Electrical properties and applications of carbon nanotube structures
    Bandaru, Prabhakar R.
    [J]. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2007, 7 (4-5) : 1239 - 1267
  • [7] Orientation-dependent tensile deformation and damage of a T700 carbon fiber/epoxy composite: A synchrotron-based study
    Bie, B. X.
    Huang, J. Y.
    Fan, D.
    Sun, T.
    Fezzaa, K.
    Xiao, X. H.
    Qi, M. L.
    Luo, S. N.
    [J]. CARBON, 2017, 121 : 127 - 133
  • [8] Dynamic fracture of carbon nanotube/epoxy composites under high strain-rate loading
    Bie, B. X.
    Han, J. H.
    Lu, L.
    Zhou, X. M.
    Qi, M. L.
    Zhang, Z.
    Luo, S. N.
    [J]. COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2015, 68 : 282 - 288
  • [9] X-ray microtomography analysis of dynamic damage in tantalum
    Bontaz-Carion, Joelle
    Pellegrini, Yves-Patrick
    [J]. ADVANCED ENGINEERING MATERIALS, 2006, 8 (06) : 480 - 486
  • [10] Microstructural characterization and constitutive modeling of deformation of closed-cell foams based on in situ x-ray tomography
    Chai, H. W.
    Xie, Z. L.
    Xiao, X. H.
    Xie, H. L.
    Huang, J. Y.
    Luo, S. N.
    [J]. INTERNATIONAL JOURNAL OF PLASTICITY, 2020, 131