Neutral stochastic delay partial functional integro-differential equations driven by a fractional Brownian motion

被引:37
作者
Caraballo, Tomas [1 ]
Diop, Mamadou Abdoul [2 ]
机构
[1] Univ Seville, Dpto Ecuac Diferenciales & Anal Numer, E-41080 Seville, Spain
[2] Univ Gaston Berger St Louis, Dept Math, UFR SAT, St Louis 234, Senegal
关键词
Resolvent operator; C-0-semigroup; Wiener process; mild solution; fractional Brownian motion; SUCCESSIVE-APPROXIMATIONS; EVOLUTION-EQUATIONS;
D O I
10.1007/s11464-013-0300-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with the existence and uniqueness of mild solutions to neutral stochastic delay functional integro-differential equations perturbed by a fractional Brownian motion B (H) , with Hurst parameter H a (1/2, 1). We use the theory of resolvent operators developed by R. Grimmer to show the existence of mild solutions. An example is provided to illustrate the results of this work.
引用
收藏
页码:745 / 760
页数:16
相关论文
共 14 条
[1]   Stochastic calculus with respect to Gaussian processes [J].
Alòs, E ;
Mazet, O ;
Nualart, D .
ANNALS OF PROBABILITY, 2001, 29 (02) :766-801
[2]   Existence of mild solutions to stochastic neutral partial functional differential equations with non-Lipschitz coefficients [J].
Bao, Jianhai ;
Hou, Zhenting .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (01) :207-214
[3]   Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space [J].
Boufoussi, Brahim ;
Hajji, Salah .
STATISTICS & PROBABILITY LETTERS, 2012, 82 (08) :1549-1558
[4]   Successive approximations of infinite dimensional SDEs with jump [J].
Cao, GL ;
He, K ;
Zhang, XC .
STOCHASTICS AND DYNAMICS, 2005, 5 (04) :609-619
[5]  
Caraballo T, 2007, DISCRETE CONT DYN-A, V18, P295
[6]   The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion [J].
Caraballo, T. ;
Garrido-Atienza, M. J. ;
Taniguchi, T. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (11) :3671-3684
[7]  
Govindan T.E., 2005, Stochastics, V77, P139
[8]   RESOLVENT OPERATORS FOR INTEGRAL-EQUATIONS IN A BANACH-SPACE [J].
GRIMMER, RC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 273 (01) :333-349
[9]   A note on the existence and uniqueness of mild solutions to neutral stochastic partial functional differential equations with non-Lipschitz coefficients [J].
Jiang, Feng ;
Shen, Yi .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (06) :1590-1594
[10]  
Mishura Y. S., 2008, LECT NOTES MATH, V1929