The relative roles of electrostatics and dispersion in the stabilization of halogen bonds

被引:128
作者
Riley, Kevin E. [1 ]
Hobza, Pavel [2 ]
机构
[1] Xavier Univ Louisiana, Dept Chem, New Orleans, LA 70125 USA
[2] Acad Sci Czech Republ, Inst Organ Chem & Biochem, CR-16610 Prague, Czech Republic
关键词
ADAPTED PERTURBATION-THEORY; INTERMOLECULAR INTERACTIONS; CHARGE-TRANSFER; PI INTERACTIONS; HYDROGEN-BOND; FORCE-FIELD; PM6; METHOD; COMPLEXES; BENZENE; BINDING;
D O I
10.1039/c3cp52768a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work we highlight recent work aimed at the characterization of halogen bonds. Here we discuss the origins of the sigma-hole, the modulation of halogen bond strength by changing of neighboring chemical groups (i.e. halogen bond tuning), the performance of various computational methods in treating halogen bonds, and the strength and character of the halogen bond, the dihalogen bond, and two hydrogen bonds in bromomethanol dimers (which serve as model complexes) are compared. Symmetry adapted perturbation theory analysis of halogen bonding complexes indicates that halogen bonds strongly depend on both dispersion and electrostatics. The electrostatic interaction that occurs between the halogen sigma-hole and the electronegative halogen bond donor is responsible for the high degree of directionality exhibited by halogen bonds. Because these noncovalent interactions have a strong dispersion component, it is important that the computational method used to treat a halogen bonding system be chosen very carefully, with correlated methods (such as CCSD(T)) being optimal. It is also noted here that most forcefield-based molecular mechanics methods do not describe the halogen sigma-hole, and thus are not suitable for treating systems with halogen bonds. Recent attempts to improve the molecular mechanics description of halogen bonds are also discussed.
引用
收藏
页码:17742 / 17751
页数:10
相关论文
共 66 条
[1]   The quest for a molecular capsule assembled via halogen bonds [J].
Aakeroey, Christer B. ;
Rajbanshi, Arbin ;
Metrangolo, Pierangelo ;
Resnati, Giuseppe ;
Parisi, Melchiorre F. ;
Desper, John ;
Pilati, Tullio .
CRYSTENGCOMM, 2012, 14 (20) :6366-6368
[2]  
[Anonymous], J COMPUT CHEM
[3]   Defining the hydrogen bond: An account (IUPAC Technical Report) [J].
Arunan, Elangannan ;
Desiraju, Gautam R. ;
Klein, Roger A. ;
Sadlej, Joanna ;
Scheiner, Steve ;
Alkorta, Ibon ;
Clary, David C. ;
Crabtree, Robert H. ;
Dannenberg, Joseph J. ;
Hobza, Pavel ;
Kjaergaard, Henrik G. ;
Legon, Anthony C. ;
Mennucci, Benedetta ;
Nesbitt, David J. .
PURE AND APPLIED CHEMISTRY, 2011, 83 (08) :1619-1636
[4]   Halogen bonds in biological molecules [J].
Auffinger, P ;
Hays, FA ;
Westhof, E ;
Ho, PS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (48) :16789-16794
[5]   Substituent effects in halogen bonding complexes between aromatic donors and acceptors: a comprehensive ab initio study [J].
Bauza, Antonio ;
Quinonero, David ;
Frontera, Antonio ;
Deya, Pere M. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (45) :20371-20379
[6]   A Medicinal Chemist's Guide to Molecular Interactions [J].
Bissantz, Caterina ;
Kuhn, Bernd ;
Stahl, Martin .
JOURNAL OF MEDICINAL CHEMISTRY, 2010, 53 (14) :5061-5084
[7]  
BRINCK T, 1992, INT J QUANTUM CHEM, V44, P57
[8]   Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies [J].
Bulat, Felipe A. ;
Toro-Labbe, Alejandro ;
Brinck, Tore ;
Murray, Jane S. ;
Politzer, Peter .
JOURNAL OF MOLECULAR MODELING, 2010, 16 (11) :1679-1691
[9]   Scalable Anisotroplic Shape and Electrostatic Models for Biological Bromine Halogen Bonds [J].
Carter, Megan ;
Rappe, Anthony K. ;
Ho, P. Shing .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (07) :2461-2473
[10]  
Chuzinski M. G., 2012, J ORG CHEM, V77, P3483