Stability and Relaxation Mechanisms of Citric Acid Coated Magnetite Nanoparticles for Magnetic Hyperthermia

被引:168
作者
Elisa de Sousa, M. [1 ]
Fernandez van Raap, Marcela B. [1 ]
Rivas, Patricia C. [1 ]
Mendoza Zelis, Pedro [1 ]
Girardin, Pablo [1 ]
Pasquevich, Gustavo A. [1 ]
Alessandrini, Jose L. [1 ]
Muraca, Diego [2 ]
Sanchez, Francisco H. [1 ]
机构
[1] Univ Nacl La Plata, Fac Ciencias Exactas, Dept Fis, Inst Fis La Plata IFLP CONICET, RA-1900 La Plata, Buenos Aires, Argentina
[2] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13081970 Campinas, SP, Brazil
关键词
IRON-OXIDE NANOPARTICLES; IN-VIVO; FLUIDS;
D O I
10.1021/jp311556b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Magnetite (Fe3O4) nanoparticles are proper materials for Magnetic Fluid Hyperthermia applications whenever these conjugate stability at physiological (neutral pH) medium and high specific dissipation power. Here, magnetite nanoparticles 9-12 nm in size, electrostatically stabilized by citric acid coating, with hydrodynamic sizes in the range 17-30 nm, and well dispersed in aqueous solution were prepared using a chemical route. The influence of media acidity during the adsorption of citric acid (CA) on the suspension's long-term stability was systematically investigated. The highest content of nanoparticles in a stable suspension at neutral pH is obtained for coating performed at pH = 4.58, corresponding to the larger amount of CA molecules adsorbed by one carboxylate link. Specific absorption rates (SARs) of various magnetite colloids, determined calorimetrically at a radio frequency field of 265 kHz and field amplitude of 40.1 kA/m, are analyzed in terms of structural and magnetic colloid properties. Larger dipolar interactions lead to larger Neel relaxation times, in some cases larger than Brown relaxation times, which in the present case enhanced magnetic radio frequency heating. The improvement of suspension stability results in a decrease of SAR values, and this decrease is even large in comparison with uncoated magnetite nanoparticles. This fact is related to interactions between particles.
引用
收藏
页码:5436 / 5445
页数:10
相关论文
共 35 条
[1]   Granular Cu-Co alloys as interacting superparamagnets [J].
Allia, P ;
Coisson, M ;
Tiberto, P ;
Vinai, F ;
Knobel, M ;
Novak, MA ;
Nunes, WC .
PHYSICAL REVIEW B, 2001, 64 (14) :1444201-14442012
[2]   Magnetic nanoparticles with bulklike properties (invited) [J].
Batlle, Xavier ;
Perez, N. ;
Guardia, P. ;
Iglesias, O. ;
Labarta, A. ;
Bartolome, F. ;
Garcia, L. M. ;
Bartolome, J. ;
Roca, A. G. ;
Morales, M. P. ;
Serna, C. J. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (07)
[3]   Preparation and properties of water-based magnetic fluids [J].
Campelj, S. ;
Makovec, D. ;
Drofenik, M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (20)
[4]   Reactivity of inorganic nanoparticles in biological environments: insights into nanotoxicity mechanisms [J].
Casals, E. ;
Gonzalez, E. ;
Puntes, V. F. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2012, 45 (44)
[5]   Magnetic nanoparticles and targeted drug delivering [J].
Chomoucka, Jana ;
Drbohlavova, Jana ;
Huska, Dalibor ;
Adam, Vojtech ;
Kizek, Rene ;
Hubalek, Jaromir .
PHARMACOLOGICAL RESEARCH, 2010, 62 (02) :144-149
[6]   Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery [J].
Dobson, J .
GENE THERAPY, 2006, 13 (04) :283-287
[7]  
Dormann J. L., 1988, SOLID STATE PHYS C, V21, P2015
[8]  
Dormann J. L., 2007, ADV CHEM PHYS, V98
[9]   Magnetic properties of nearly defect-free maghemite nanocrystals [J].
Dutta, P ;
Manivannan, A ;
Seehra, MS ;
Shah, N ;
Huffman, GP .
PHYSICAL REVIEW B, 2004, 70 (17) :1-7
[10]   An experimental study of the dynamic properties of nanoparticle colloids with identical magnetization but different particle size [J].
Fannin, P. C. ;
Marin, C. N. ;
Raj, K. ;
Couper, C. ;
Barvinschi, P. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2012, 324 (21) :3443-3447