Piezoresistive cantilevers for nanomechanical sensing

被引:36
作者
Bausells, Joan [1 ]
机构
[1] IMB CNM CSIC, Inst Microelect Barcelona, Bellaterra 08193, Spain
关键词
Piezoresistance; Piezoresistor; Cantilever; Nanomechanical sensing; AFM probe; ATOMIC-FORCE MICROSCOPY; WHEATSTONE BRIDGE CANTILEVERS; SCANNING PROBE ARRAYS; SURFACE STRESS; 1/F NOISE; READ-OUT; NANOELECTROMECHANICAL SYSTEMS; MICROCANTILEVER SENSORS; ELECTRICAL DETECTION; SILICON CANTILEVERS;
D O I
10.1016/j.mee.2015.02.010
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Microfabricated cantilevers have enabled a wide range of applications in scanning probe microscopies (SPM) and in high-sensitivity nanomechanical sensors. The use of piezoresistivity for self-sensing the cantilever motion is preferred to the standard optical readout for some applications, in view of the advantages that it offers in terms of miniaturization, operation in non-transparent liquid media and capability of simultaneously addressing arrays of devices. Although in principle piezoresistive cantilevers should have a lower resolution than their optical counterparts, current devices can achieve similar performances. This is because a large amount of work has been devoted in the past two decades to their development. This paper provides a short review of the field of piezoresistive cantilevers. We discuss the device performances for the measurement of forces or surface stresses in static operation, or masses in dynamic operation. We then describe the fabrication technologies and materials that are typically used to manufacture the cantilevers. Finally, the main applications in the domains of SPM and nanomechanical sensing are presented. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:9 / 20
页数:12
相关论文
共 129 条
[31]   Design optimization of piezoresistive cantilevers for force sensing in air and water [J].
Doll, Joseph C. ;
Park, Sung-Jin ;
Pruitt, Beth L. .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (06)
[32]   Chemical sensing:: millimeter size resonant microcantilever performance [J].
Fadel, L ;
Lochon, F ;
Dufour, I ;
Français, O .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2004, 14 (09) :S23-S30
[33]   Use of self-actuating and self-sensing cantilevers for imaging biological samples in fluid [J].
Fantner, G. E. ;
Schumann, W. ;
Barbero, R. J. ;
Deutschinger, A. ;
Todorov, V. ;
Gray, D. S. ;
Belcher, A. M. ;
Rangelow, I. W. ;
Youcef-Toumi, K. .
NANOTECHNOLOGY, 2009, 20 (43)
[34]   ADHESION FORCES BETWEEN INDIVIDUAL LIGAND-RECEPTOR PAIRS [J].
FLORIN, EL ;
MOY, VT ;
GAUB, HE .
SCIENCE, 1994, 264 (5157) :415-417
[35]   Ultrasensitive mass sensor fully integrated with complementary metal-oxide-semiconductor circuitry [J].
Forsen, E ;
Abadal, G ;
Ghatnekar-Nilsson, S ;
Teva, J ;
Verd, J ;
Sandberg, R ;
Svendsen, W ;
Perez-Murano, F ;
Esteve, J ;
Figueras, E ;
Campabadal, F ;
Montelius, L ;
Barniol, N ;
Boisen, A .
APPLIED PHYSICS LETTERS, 2005, 87 (04)
[36]   Nanochemical surface analyzer in CMOS technology [J].
Franks, W ;
Lange, D ;
Lee, S ;
Hierlemann, A ;
Spencer, N ;
Baltes, H .
ULTRAMICROSCOPY, 2002, 91 (1-4) :21-27
[37]   Polysilicon: a versatile material for microsystems [J].
French, PJ .
SENSORS AND ACTUATORS A-PHYSICAL, 2002, 99 (1-2) :3-12
[38]   PIEZORESISTANCE IN POLYSILICON AND ITS APPLICATIONS TO STRAIN-GAUGES [J].
FRENCH, PJ ;
EVANS, AGR .
SOLID-STATE ELECTRONICS, 1989, 32 (01) :1-10
[39]   Translating biomolecular recognition into nanomechanics [J].
Fritz, J ;
Baller, MK ;
Lang, HP ;
Rothuizen, H ;
Vettiger, P ;
Meyer, E ;
Güntherodt, HJ ;
Gerber, C ;
Gimzewski, JK .
SCIENCE, 2000, 288 (5464) :316-318
[40]   MECHANICAL-THERMAL NOISE IN MICROMACHINED ACOUSTIC AND VIBRATION SENSORS [J].
GABRIELSON, TB .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1993, 40 (05) :903-909