Piezoresistive cantilevers for nanomechanical sensing

被引:36
作者
Bausells, Joan [1 ]
机构
[1] IMB CNM CSIC, Inst Microelect Barcelona, Bellaterra 08193, Spain
关键词
Piezoresistance; Piezoresistor; Cantilever; Nanomechanical sensing; AFM probe; ATOMIC-FORCE MICROSCOPY; WHEATSTONE BRIDGE CANTILEVERS; SCANNING PROBE ARRAYS; SURFACE STRESS; 1/F NOISE; READ-OUT; NANOELECTROMECHANICAL SYSTEMS; MICROCANTILEVER SENSORS; ELECTRICAL DETECTION; SILICON CANTILEVERS;
D O I
10.1016/j.mee.2015.02.010
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Microfabricated cantilevers have enabled a wide range of applications in scanning probe microscopies (SPM) and in high-sensitivity nanomechanical sensors. The use of piezoresistivity for self-sensing the cantilever motion is preferred to the standard optical readout for some applications, in view of the advantages that it offers in terms of miniaturization, operation in non-transparent liquid media and capability of simultaneously addressing arrays of devices. Although in principle piezoresistive cantilevers should have a lower resolution than their optical counterparts, current devices can achieve similar performances. This is because a large amount of work has been devoted in the past two decades to their development. This paper provides a short review of the field of piezoresistive cantilevers. We discuss the device performances for the measurement of forces or surface stresses in static operation, or masses in dynamic operation. We then describe the fabrication technologies and materials that are typically used to manufacture the cantilevers. Finally, the main applications in the domains of SPM and nanomechanical sensing are presented. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:9 / 20
页数:12
相关论文
共 129 条
[1]   Piezoelectric self-sensing of adsorption-induced microcantilever bending [J].
Adams, JD ;
Rogers, B ;
Manning, L ;
Hu, Z ;
Thundat, T ;
Cavazos, H ;
Minne, SC .
SENSORS AND ACTUATORS A-PHYSICAL, 2005, 121 (02) :457-461
[2]   Scanning probe arrays for life sciences and nanobiology applications [J].
Aeschimann, L ;
Meister, A ;
Akiyama, T ;
Chui, BW ;
Niedermann, P ;
Heinzelmann, H ;
De Rooij, NF ;
Staufer, U ;
Vettiger, P .
MICROELECTRONIC ENGINEERING, 2006, 83 (4-9) :1698-1701
[3]   Piezoresistive scanning probe arrays for operation in liquids [J].
Aeschimann, L. ;
Goericke, F. ;
Polesel-Maris, J. ;
Meister, A. ;
Akiyama, T. ;
Chui, B. ;
Staufer, U. ;
Pugin, R. ;
Heinzelmann, H. ;
de Rooij, N. F. ;
King, W. P. ;
Vettiger, P. .
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NANOSCIENCE AND TECHNOLOGY, 2007, 61 :6-10
[4]   ATOMIC RESOLUTION IMAGING OF A NONCONDUCTOR BY ATOMIC FORCE MICROSCOPY [J].
ALBRECHT, TR ;
QUATE, CF .
JOURNAL OF APPLIED PHYSICS, 1987, 62 (07) :2599-2602
[5]   Self-sensing micro- and nanocantilevers with attonewton-scale force resolution [J].
Arlett, J. L. ;
Maloney, J. R. ;
Gudlewski, B. ;
Muluneh, M. ;
Roukes, M. L. .
NANO LETTERS, 2006, 6 (05) :1000-1006
[6]   Comparative advantages of mechanical biosensors [J].
Arlett, J. L. ;
Myers, E. B. ;
Roukes, M. L. .
NATURE NANOTECHNOLOGY, 2011, 6 (04) :203-215
[7]   TRANSPORT PROPERTIES OF POLYCRYSTALLINE SILICON FILMS [J].
BACCARANI, G ;
RICCO, B ;
SPADINI, G .
JOURNAL OF APPLIED PHYSICS, 1978, 49 (11) :5565-5570
[8]   Label-free sugar detection using phenylboronic acid-functionalized piezoresistive microcantilevers [J].
Baker, Gary A. ;
Desikan, Ramya ;
Thundat, Thomas .
ANALYTICAL CHEMISTRY, 2008, 80 (13) :4860-4865
[9]   Future of IC microtransducers [J].
Baltes, H .
SENSORS AND ACTUATORS A-PHYSICAL, 1996, 56 (1-2) :179-192
[10]   Sensitive detection of nanomechanical motion using piezoresistive signal downmixing [J].
Bargatin, I ;
Myers, EB ;
Arlett, J ;
Gudlewski, B ;
Roukes, ML .
APPLIED PHYSICS LETTERS, 2005, 86 (13) :1-3