A new view to Ziegler-Nichols step response tuning method: Analytic non-fragility justification

被引:23
作者
Bahavarnia, MirSaleh [1 ]
Tavazoei, Mohammad Saleh [1 ]
机构
[1] Sharif Univ Technol, Dept Elect Engn, Tehran, Iran
关键词
Ziegler-Nichols step response tuning method; PID; Integrator plus dead-time (IPDT) process; First order plus dead-time (FOPDT) process; Centroid; Non-fragility; PID CONTROLLERS; ROBUST;
D O I
10.1016/j.jprocont.2012.10.012
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, exploiting the centroids of stability regions (admissible regions) to be used in tuning two-parameter controllers has been considered as an approach to obtain non-fragile two-parameter controllers. Such an approach can be extended for three-dimensional stability spaces (admissible spaces) by considering the center of mass of these spaces in tuning three-parameter controllers. In this paper, the mentioned approach is used to tune PID controllers for controlling integrator plus dead-time (IPDT) and first order plus dead-time (FOPDT) processes. It is shown that the tuning method resulted from this approach is very similar to the Ziegler-Nichols step response tuning method. Consequently, this paper presents an analytic non-fragility justification for the mentioned tuning method. (C) 2012 Elsevier Ltd. All rights reserved,
引用
收藏
页码:23 / 33
页数:11
相关论文
共 15 条
[1]   PID controllers' fragility [J].
Alfaro, Victor M. .
ISA TRANSACTIONS, 2007, 46 (04) :555-559
[2]  
[Anonymous], 2009, HDB PI PID CONTROLLE, DOI DOI 10.1142/P575
[3]  
[Anonymous], CALCULUS ANAL GEOMET
[4]  
[Anonymous], 11 IEEE MED C CONTR
[5]  
[Anonymous], 18 IEEE INT C CONTR
[6]  
Astrom K.J., 1995, INSTRUMENT SOC AM
[7]   Revisiting the Ziegler-Nichols step response method for PID control [J].
Åstrom, KJ ;
Hågglund, T .
JOURNAL OF PROCESS CONTROL, 2004, 14 (06) :635-650
[8]   The future of PID control [J].
Åström, KJ ;
Hägglund, T .
CONTROL ENGINEERING PRACTICE, 2001, 9 (11) :1163-1175
[9]   REFINEMENTS OF THE ZIEGLER-NICHOLS TUNING FORMULA [J].
HANG, CC ;
ASTROM, KJ ;
HO, WK .
IEE PROCEEDINGS-D CONTROL THEORY AND APPLICATIONS, 1991, 138 (02) :111-118
[10]   Robust, fragile, or optimal? [J].
Keel, LH ;
Bhattacharyya, SP .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (08) :1098-1105