On (k, ψ)-Hilfer Fractional Differential Equations and Inclusions with Mixed (k, ψ)-Derivative and Integral Boundary Conditions

被引:9
作者
Ntouyas, Sotiris K. [1 ]
Ahmad, Bashir [2 ]
Nuchpong, Cholticha [3 ]
Tariboon, Jessada [4 ]
机构
[1] Univ Ioannina, Dept Math, Ioannina 45110, Greece
[2] King Abdulaziz Univ, Nonlinear Anal & Appl Math NAAM Res Grp, Dept Math, Fac Sci, POB 80203, Jeddah 21589, Saudi Arabia
[3] King Mongkuts Univ Technol North Bangkok, Coll Ind Technol, Thai German Preengn Sch, Bangkok 10800, Thailand
[4] King Mongkuts Univ Technol North Bangkok, Fac Appl Sci, Intelligent & Nonlinear Dynam Innovat Res Ctr, Dept Math, Bangkok 10800, Thailand
关键词
(k; psi)-Hilfer fractional derivative; Riemann-Liouville fractional derivative; Caputo fractional derivative; existence; uniqueness; fixed point theorems;
D O I
10.3390/axioms11080403
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study single-valued and multi-valued (k, psi)-Hilfer-type boundary value problems of fractional order in (1,2], subject to nonlocal boundary conditions involving (k, psi)-Hilfer-type derivative and integral operators. The results for single-valued case are established by using Banach and Krasnosel'skii fixed point theorems as well as Leray-Schauder nonlinear alternative. In the multi-valued case, we establish an existence result for the convex valued right-hand side of the inclusion via Leray-Schauder nonlinear alternative for multi-valued maps, while the second one when the right-hand side has non-convex values is obtained by applying Covitz-Nadler fixed point theorem for multi-valued contractions. Numerical examples illustrating the obtained theoretical results are also presented.
引用
收藏
页数:17
相关论文
共 33 条
[1]  
Ahmad B., 2017, HADAMARD TYPE FRACTI
[2]  
Ahmad B., 2021, NONLOCAL NONLINEAR F, DOI [10.1142/12102, DOI 10.1142/12102]
[3]   A Caputo fractional derivative of a function with respect to another function [J].
Almeida, Ricardo .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 44 :460-481
[4]  
Castaing C., 1977, CONVEX ANAL MEASURAB, V580, DOI [DOI 10.1007/BFB0087686, 10.1007/BFb0087685, DOI 10.1007/BFB0087685]
[5]  
Cho YJ., 2021, ADV METRIC FIXED POI
[6]   MULTI-VALUED CONTRACTION MAPPINGS IN GENERALIZED METRIC SPACES [J].
COVITZ, H ;
NADLER, SB .
ISRAEL JOURNAL OF MATHEMATICS, 1970, 8 (01) :5-&
[7]  
Debnath P., 2021, Metric fixed point theory: Applications in science, engineering and behavioural sciences, DOI 10.1007/978-981-16-4896-0
[8]  
Deimling K., 2011, Multivalued Differential Equations, DOI DOI 10.1515/9783110874228
[9]  
Deimling K., 1985, NONLINEAR FUNCTIONAL, DOI [DOI 10.1007/978-3-662-00547-7, DOI 10.1007/s00285-013-0689-z]
[10]  
Diaz R., 2007, DIVULGACIONES MATEMA, V15, P179