Reversible end-to-end assembly of gold nanorods using a disulfide-modified polypeptide

被引:22
|
作者
Walker, David A. [1 ]
Gupta, Vinay K. [1 ]
机构
[1] Univ S Florida, Dept Chem & Biomed Engn, Tampa, FL 33620 USA
关键词
D O I
10.1088/0957-4484/19/43/435603
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Directing the self-assembly of colloidal particles into nanostructures is of great interest in nanotechnology. Here, reversible end-to-end assembly of gold nanorods (GNR) is induced by pH-dependent changes in the secondary conformation of a disulfide-modified poly(L-glutamic acid) (SSPLGA). The disulfide anchoring group drives chemisorption of the polyacid onto the end of the gold nanorods in an ethanolic solution. A layer of poly(vinyl pyrrolidone) is adsorbed on the positively charged, surfactant-stabilized GNR to screen the surfactant bilayer charge and provide stability for dispersion of the GNR in ethanol. For comparison, irreversible end-to-end assembly using a bidentate ligand, namely 1,6-hexanedithiol, is also performed. Characterization of the modified GNR and its end-to-end linking behavior using SSPLGA and hexanedithiol is performed using dynamic light scattering (DLS), UV-vis absorption spectroscopy and transmission electron microscopy (TEM). Experimental results show that, in a colloidal solution of GNR-SSPLGA at a pH similar to 3.5, where the PLGA is in an alpha-helical conformation, the modified GNR self-assemble into one-dimensional nanostructures. The linking behavior can be reversed by increasing the pH (>8.5) to drive the conformation of the polypeptide to a random coil and this reversal with pH occurs rapidly within minutes. Cycling the pH multiple times between low and high pH values can be used to drive the formation of the nanostructures of the GNR and disperse them in solution.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Stable end-to-end assembly of gold nanorods directed by cyclic disulfide-modified DNA
    Zhang, Zhiliang
    Wen, Yongqiang
    Zhao, Dan
    Zhang, Xueji
    APPLIED PHYSICS LETTERS, 2012, 101 (21)
  • [2] Coordination chemistry approach for the end-to-end assembly of gold nanorods
    Selvakannan, P. R.
    Dumas, Eddy
    Dumur, Frederic
    Pechoux, Christine
    Beaunier, Patricia
    Etcheberry, Arnaud
    Secheresse, Francis
    Remita, Hynd
    Mayer, Cedric R.
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2010, 349 (01) : 93 - 97
  • [3] Sulfate-Mediated End-to-End Assembly of Gold Nanorods
    Abtahi, S. M. H.
    Burrows, Nathan D.
    Idesis, Fred A.
    Murphy, Catherine J.
    Saleh, Navid B.
    Vikesland, Peter J.
    LANGMUIR, 2017, 33 (06) : 1486 - 1495
  • [4] End-to-end assembly of gold nanorods via a peptide linker
    Roodbeen, R.
    Jain, T.
    Reeler, N.
    Vosch, T.
    Jensen, K. J.
    Norgaard, K.
    JOURNAL OF PEPTIDE SCIENCE, 2012, 18 : S80 - S80
  • [5] Solvent-Mediated End-to-End Assembly of Gold Nanorods
    Wang, Yiliang
    DePrince, A. Eugene, III
    Gray, Stephen K.
    Lin, Xiao-Min
    Pelton, Matthew
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (18): : 2692 - 2698
  • [6] Gold Nanorods Go End-To-End
    不详
    ACS NANO, 2009, 3 (04) : 755 - 755
  • [7] Metal-Metal and π-π Interactions Directed End-to-End Assembly of Gold Nanorods
    Leung, Frankie Chi-Ming
    Leung, Sammual Yu-Lut
    Chung, Clive Yik-Sham
    Yam, Vivian Wing-Wah
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (09) : 2989 - 2992
  • [8] End-to-end assembly of gold nanorods via oligopeptide linking and surfactant control
    Jain, Titoo
    Roodbeen, Renee
    Reeler, Nini E. A.
    Vosch, Tom
    Jensen, Knud J.
    Bjornholm, Thomas
    Norgaard, Kasper
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2012, 376 : 83 - 90
  • [9] End-to-end assembly of CTAB-stabilized gold nanorods by citrate anions
    Kawamura, Go
    Yang, Yong
    Nogami, Masayuki
    JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (29): : 10632 - 10636
  • [10] End-to-End Assembly of Gold Nanorods on the Basis of Aptamer-Protein Recognition
    Zhen, Shu Jun
    Huang, Cheng Zhi
    Wang, Jian
    Li, Yuan Fang
    JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (52): : 21543 - 21547