Inertial Krasnosel'skii-Mann type hybrid algorithms for solving hierarchical fixed point problems

被引:25
作者
Dong, Qiao-Li [1 ]
Kazmi, K. R. [2 ,3 ]
Ali, Rehan [4 ]
Li, Xiao-Huan [1 ]
机构
[1] Civil Aviat Univ China, Coll Sci, Tianjin 300300, Peoples R China
[2] King Abdulaziz Univ, Fac Sci & Arts Rabigh, Dept Math, Jeddah, Saudi Arabia
[3] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
[4] Jamia Millia Islamia, Dept Math, New Delhi 110025, India
关键词
Hierarchical fixed point problem; inertial Krasnosel'skii-Mann type hybrid algorithm; nonexpansive mapping; strong convergence; 47H10; 49J35; 90C47; FORWARD-BACKWARD ALGORITHM; STRONG-CONVERGENCE; NONEXPANSIVE-MAPPINGS; MONOTONE-OPERATORS; ITERATIVE METHOD; PROXIMAL METHOD; THEOREMS;
D O I
10.1007/s11784-019-0699-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we suggest two inertial Krasnosel'skii-Mann type hybrid algorithms to approximate a solution of a hierarchical fixed point problem for nonexpansive mappings in Hilbert space. We prove strong convergence theorems for these algorithms and the conditions of the convergence are very weak comparing other algorithms for the hierarchical fixed point problems. Further, we derive some consequences from the main results. Finally, we present two academic numerical examples for comparing these two algorithms with the algorithm in Dong et al. (J Fixed Point Theory A 19(4):3097-3118, 2017), which illustrate the advantage of the proposed algorithms. The methods and results presented in this paper generalize and unify previously known corresponding methods and results of this area.
引用
收藏
页数:22
相关论文
共 46 条
[2]   An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping [J].
Alvarez, F ;
Attouch, H .
SET-VALUED ANALYSIS, 2001, 9 (1-2) :3-11
[3]  
[Anonymous], 1996, MATH PROGRAMS EQUILI, DOI DOI 10.1017/CBO9780511983658
[4]  
[Anonymous], 1990, CAMBRIDGE STUDIES AD
[5]  
[Anonymous], 1980, Mat. Zametki
[6]   A DYNAMICAL APPROACH TO AN INERTIAL FORWARD-BACKWARD ALGORITHM FOR CONVEX MINIMIZATION [J].
Attouch, Hedy ;
Peypouquet, Juan ;
Redont, Patrick .
SIAM JOURNAL ON OPTIMIZATION, 2014, 24 (01) :232-256
[7]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[8]   An inertial forward-backward-forward primal-dual splitting algorithm for solving monotone inclusion problems [J].
Bot, Radu Ioan ;
Csetnek, Ernoe Robert .
NUMERICAL ALGORITHMS, 2016, 71 (03) :519-540
[9]   Inertial Douglas-Rachford splitting for monotone inclusion problems [J].
Bot, Radu Ioan ;
Csetnek, Ernoe Robert ;
Hendrich, Christopher .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 :472-487
[10]  
Brezis H., 1973, OPERATEURS MAXIMAUX, V5