Calibration Optimization Methodology for Lithium-Ion Battery Pack Model for Electric Vehicles in Mining Applications

被引:19
|
作者
Astaneh, Majid [1 ]
Andric, Jelena [1 ]
Lofdahl, Lennart [1 ]
Maggiolo, Dario [1 ]
Stopp, Peter [2 ]
Moghaddam, Mazyar [3 ]
Chapuis, Michel [3 ]
Strom, Henrik [1 ]
机构
[1] Chalmers Univ Technol, Dept Mech & Maritime Sci, S-41296 Gothenburg, Sweden
[2] Gamma Technol GmbH, Danneckerstr 37, D-70182 Stuttgart, Germany
[3] Northvolt, Gamla Brogatan 26, S-11120 Stockholm, Sweden
关键词
lithium-ion battery; battery pack; electrochemical-thermal modeling; calibration optimization; electric vehicle; ELECTROCHEMICAL-THERMAL-MODEL; FULL CELL PARAMETERIZATION; PHYSICOCHEMICAL MODEL; IDENTIFICATION; POWER; PERFORMANCE; DISCHARGE; CHARGE;
D O I
10.3390/en13143532
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Large-scale introduction of electric vehicles (EVs) to the market sets outstanding requirements for battery performance to extend vehicle driving range, prolong battery service life, and reduce battery costs. There is a growing need to accurately and robustly model the performance of both individual cells and their aggregated behavior when integrated into battery packs. This paper presents a novel methodology for Lithium-ion (Li-ion) battery pack simulations under actual operating conditions of an electric mining vehicle. The validated electrochemical-thermal models of Li-ion battery cells are scaled up into battery modules to emulate cell-to-cell variations within the battery pack while considering the random variability of battery cells, as well as electrical topology and thermal management of the pack. The performance of the battery pack model is evaluated using transient experimental data for the pack operating conditions within the mining environment. The simulation results show that the relative root mean square error for the voltage prediction is 0.7-1.7% and for the battery pack temperature 2-12%. The proposed methodology is general and it can be applied to other battery chemistries and electric vehicle types to perform multi-objective optimization to predict the performance of large battery packs.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Estimation of State of Charge of a Lithium-Ion Battery Pack for Electric Vehicles Using an Adaptive Luenberger Observer
    Hu, Xiaosong
    Sun, Fengchun
    Zou, Yuan
    ENERGIES, 2010, 3 (09): : 1586 - 1603
  • [22] PTC Self-heating Experiments and Thermal Modeling of Lithium-ion Battery Pack in Electric Vehicles
    Zhang, Chengning
    Jin, Xin
    Li, Junqiu
    ENERGIES, 2017, 10 (04)
  • [23] Gradient-based optimization for parameter identification of lithium-ion battery model for electric vehicles
    Almousa, Motab Turki
    Gomaa, Mohamed R.
    Ghasemi, Mostafa
    Louzazni, Mohamed
    RESULTS IN ENGINEERING, 2024, 24
  • [24] Simulation of lithium ion battery replacement in a battery pack for application in electric vehicles
    Mathew, M.
    Kong, Q. H.
    McGrory, J.
    Fowler, M.
    JOURNAL OF POWER SOURCES, 2017, 349 : 94 - 104
  • [25] Thermal Management of Lithium-Ion Battery Pack Using Equivalent Circuit Model
    Kaliaperumal, Muthukrishnan
    Chidambaram, Ramesh Kumar
    VEHICLES, 2024, 6 (03): : 1200 - 1215
  • [26] Experimental Study on the Mechanism of Thermal Runaway Propagation in Lithium-ion Battery Pack for Electric Vehicles
    Jiang F.
    Zhang F.
    Xu C.
    Li C.
    Wang S.
    Ren Y.
    Feng X.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2021, 57 (14): : 23 - 31
  • [27] Full-scale experimental study on suppressing lithium-ion battery pack fires from electric vehicles
    Cui, Yan
    Liu, Jianghong
    Han, Xin
    Sun, Shaohua
    Cong, Beihua
    FIRE SAFETY JOURNAL, 2022, 129
  • [28] Electrothermal Modeling of Lithium-Ion Batteries for Electric Vehicles
    Yang, Zhuo
    Patil, Devendra
    Fahimi, Babak
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (01) : 170 - 179
  • [29] Adaptive state of charge estimator for lithium-ion cells series battery pack in electric vehicles
    Xiong, Rui
    Sun, Fengchun
    Gong, Xianzhi
    He, Hongwen
    JOURNAL OF POWER SOURCES, 2013, 242 : 699 - 713
  • [30] Multi-Physics Model of Lithium-Ion Battery and Battery Pack Undergoing Abuse Conditions
    Xu, Jiajun
    Hendricks, Christopher
    PROCEEDINGS OF THE TWENTIETH INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONIC SYSTEMS (ITHERM 2021), 2021, : 568 - 574