AN OPTIMAL INEQUALITY FOR CR-WARPED PRODUCTS IN COMPLEX SPACE FORMS INVOLVING CR δ-INVARIANT

被引:29
作者
Chen, Bang-Yen [1 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
关键词
CR-warped product; optimal inequality; delta-invariant; Whitney sphere; LAGRANGIAN SUBMANIFOLDS; GEOMETRY;
D O I
10.1142/S0129167X12500450
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a new optimal inequality for CR-warped products in complex space forms involving a CR delta-invariant. Moreover, we completely classify CR-warped product submanifolds in complex Euclidean space which satisfy the equality case of the inequality.
引用
收藏
页数:17
相关论文
共 18 条
[11]   Geometry of warped product CR-submanifolds in Kaehler manifolds [J].
Chen, BY .
MONATSHEFTE FUR MATHEMATIK, 2001, 133 (03) :177-195
[12]   Complex extensors and Lagrangian submanifolds in complex Euclidean spaces [J].
Chen, BY .
TOHOKU MATHEMATICAL JOURNAL, 1997, 49 (02) :277-297
[13]  
CHEN BY, 1981, J DIFFER GEOM, V16, P305
[14]  
Dragomir D.E. BlairandS., 2002, KyushuJ. Math., V56, P337
[15]   INTERNAL CHARACTERIZATION OF DISTORTED PRODUCTS [J].
HIEPKO, S .
MATHEMATISCHE ANNALEN, 1979, 241 (03) :209-215
[16]  
Oneill Barrett, 1983, Pure and Applied Mathematics
[17]  
Sasahara T., 2001, NIHONKAI MATH J, V12, P47
[18]  
[No title captured]