AN OPTIMAL INEQUALITY FOR CR-WARPED PRODUCTS IN COMPLEX SPACE FORMS INVOLVING CR δ-INVARIANT

被引:29
作者
Chen, Bang-Yen [1 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
关键词
CR-warped product; optimal inequality; delta-invariant; Whitney sphere; LAGRANGIAN SUBMANIFOLDS; GEOMETRY;
D O I
10.1142/S0129167X12500450
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a new optimal inequality for CR-warped products in complex space forms involving a CR delta-invariant. Moreover, we completely classify CR-warped product submanifolds in complex Euclidean space which satisfy the equality case of the inequality.
引用
收藏
页数:17
相关论文
共 18 条
[1]  
[Anonymous], 2011, Pseudo-Riemannian geometry, [delta]-invariants and applications
[2]  
BEJANCU A, 1986, GEOMETRY C R SUBMANI
[3]   Lagrangian submanifolds attaining equality in the improved Chen's inequality [J].
Bolton, J. ;
Vrancken, L. .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2007, 14 (02) :311-315
[4]  
Bolton J., 2008, P EDINBURGH MATH SOC, V51, P1
[5]  
Borrelli V, 1995, CR ACAD SCI I-MATH, V321, P1485
[6]  
Chen B. Y., 2003, Hokkaido Math. J., V32, P415
[7]  
Chen B.-Y., 1973, PURE APPL MATH, V22
[8]   CR-warped products in complex projective spaces with compact holomorphic factor [J].
Chen, BY .
MONATSHEFTE FUR MATHEMATIK, 2004, 141 (03) :177-186
[9]   Geometry of warped product CR-submanifolds in Kaehler manifolds, II [J].
Chen, BY .
MONATSHEFTE FUR MATHEMATIK, 2001, 134 (02) :103-119
[10]  
Chen BY, 2000, HANDBOOK OF DIFFERENTIAL GEOMETRY, VOL I, P187, DOI 10.1016/S1874-5741(00)80006-0