Dual-lifetime referencing (DLR): a powerful method for on-line measurement of internal pH in carrier-bound immobilized biocatalysts

被引:37
作者
Boniello, Caterina [1 ,2 ]
Mayr, Torsten [3 ]
Bolivar, Juan M. [2 ]
Nidetzky, Bernd [1 ,2 ]
机构
[1] ACIB, A-8010 Graz, Austria
[2] Graz Univ Technol, Inst Biotechnol & Biochem Engn, A-8010 Graz, Austria
[3] Graz Univ Technol, Inst Analyt Chem & Food Chem, A-8010 Graz, Austria
关键词
DISSOLVED-OXYGEN; OPTICAL SENSOR; CEPHALOSPORIN-C; HYDROGEL BEADS; GRADIENTS; ACID; SENSITIVITY; HYDROLYSIS; DIFFUSION; ENZYMES;
D O I
10.1186/1472-6750-12-11
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Industrial-scale biocatalytic synthesis of fine chemicals occurs preferentially as continuous processes employing immobilized enzymes on insoluble porous carriers. Diffusional effects in these systems often create substrate and product concentration gradients between bulk liquid and the carrier. Moreover, some widely-used biotransformation processes induce changes in proton concentration. Unlike the bulk pH, which is usually controlled at a suitable value, the intraparticle pH of immobilized enzymes may deviate significantly from its activity and stability optima. The magnitude of the resulting pH gradient depends on the ratio of characteristic times for enzymatic reaction and on mass transfer (the latter is strongly influenced by geometrical features of the porous carrier). Design and selection of optimally performing enzyme immobilizates would therefore benefit largely from experimental studies of the intraparticle pH environment. Here, a simple and non-invasive method based on dual-lifetime referencing (DLR) for pH determination in immobilized enzymes is introduced. The technique is applicable to other systems in which particles are kept in suspension by agitation. Results: The DLR method employs fluorescein as pH-sensitive luminophore and Ru(II) tris(4,7-diphenyl-1,10-phenantroline), abbreviated Ru(dpp), as the reference luminophore. Luminescence intensities of the two luminophores are converted into an overall phase shift suitable for pH determination in the range 5.0-8.0. Sepabeads EC-EP were labeled by physically incorporating lipophilic variants of the two luminophores into their polymeric matrix. These beads were employed as carriers for immobilization of cephalosporin C amidase (a model enzyme of industrial relevance). The luminophores did not interfere with the enzyme immobilization characteristics. Analytical intraparticle pH determination was optimized for sensitivity, reproducibility and signal stability under conditions of continuous measurement. During hydrolysis of cephalosporin C by the immobilizate in a stirred reactor with bulk pH maintained at 8.0, the intraparticle pH dropped initially by about 1 pH unit and gradually returned to the bulk pH, reflecting the depletion of substrate from solution. These results support measurement of intraparticle pH as a potential analytical processing tool for proton-forming/consuming biotransformations catalyzed by carrier-bound immobilized enzymes. Conclusions: Fluorescein and Ru(dpp) constitute a useful pair of luminophores in by DLR-based intraparticle pH monitoring. The pH range accessible by the chosen DLR system overlaps favorably with the pH ranges at which enzymes are optimally active and stable. DLR removes the restriction of working with static immobilized enzyme particles, enabling suspensions of particles to be characterized also. The pH gradient developed between particle and bulk liquid during reaction steady state is an important carrier selection parameter for enzyme immobilization and optimization of biocatalytic conversion processes. Determination of this parameter was rendered possible by the presented DLR method.
引用
收藏
页数:10
相关论文
共 29 条
[1]  
Bailey J., 1986, Biochemical Engineering Fundamentals, Vsecond
[2]   Intraparticle Concentration Gradients for Substrate and Acidic Product in Immobilized Cephalosporin C Amidase and Their Dependencies on Carrier Characteristics and Reaction Parameters [J].
Boniello, Caterina ;
Mayr, Torsten ;
Klimant, Ingo ;
Koenig, Burghard ;
Riethorst, Waander ;
Nidetzky, Bernd .
BIOTECHNOLOGY AND BIOENGINEERING, 2010, 106 (04) :528-540
[3]   Red light-excitable dual lifetime referenced optical pH sensors with intrinsic temperature compensation [J].
Borisov, Sergey M. ;
Gatterer, Karl ;
Klimant, Ingo .
ANALYST, 2010, 135 (07) :1711-1717
[4]   Luminescent nanobeads for optical sensing and imaging of dissolved oxygen [J].
Borisov, Sergey M. ;
Klimant, Ingo .
MICROCHIMICA ACTA, 2009, 164 (1-2) :7-15
[5]   Advances in enzyme immobilisation [J].
Brady, Dean ;
Jordaan, Justin .
BIOTECHNOLOGY LETTERS, 2009, 31 (11) :1639-1650
[6]  
Buchholz K., 2005, Biocatalysts and enzyme technology
[7]   IMMOBILIZED ALPHA-CHYMOTRYPSIN - PORE DIFFUSION CONTROL OWING TO PH GRADIENTS IN CATALYST PARTICLES [J].
HALWACHS, W ;
WANDREY, C ;
SCHUGERL, K .
BIOTECHNOLOGY AND BIOENGINEERING, 1978, 20 (04) :541-554
[8]   Understanding enzyme immobilisation [J].
Hanefeld, Ulf ;
Gardossi, Lucia ;
Magner, Edmond .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (02) :453-468
[9]   Microdomain pH gradient and kinetics inside composite polymeric membranes of pH and glucose sensitivity [J].
Huang, Hui Yu ;
Shaw, James ;
Yip, Christopher ;
Wu, Xiao Yu .
PHARMACEUTICAL RESEARCH, 2008, 25 (05) :1150-1157
[10]   Dual lifetime referencing as applied to a chloride optical sensor [J].
Huber, C ;
Klimant, I ;
Krause, C ;
Wolfbeis, OS .
ANALYTICAL CHEMISTRY, 2001, 73 (09) :2097-2103