Light-independent role of CRY1 and CRY2 in the mammalian circadian clock

被引:523
作者
Griffin, EA [1 ]
Staknis, D [1 ]
Weitz, CJ [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Neurobiol, Boston, MA 02115 USA
关键词
D O I
10.1126/science.286.5440.768
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cryptochrome (CRY), a photoreceptor for the circadian clock in Drosophila, binds to the clock component TIM in a light-dependent fashion and blocks its function. In mammals, genetic evidence suggests a role for CRYs within the clock, distinct from hypothetical photoreceptor functions. Mammalian CRY1 and CRY2 are here shown to act as light-independent inhibitors of CLOCK-BMAL1, the activator driving Per1 transcription. CRY1 or CRY2 (or both) showed Light-independent interactions with CLOCK and BMAL1, as well as with PER1, PER2, and TIM. Thus, mammalian CRYs act as light-independent components of the circadian clock and probably regulate Per1 transcriptional cycling by contacting both the activator and its feedback inhibitors.
引用
收藏
页码:768 / 771
页数:4
相关论文
共 27 条
[1]   A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light [J].
Albrecht, U ;
Sun, ZS ;
Eichele, G ;
Lee, CC .
CELL, 1997, 91 (07) :1055-1064
[2]   A serum shock induces circadian gene expression in mammalian tissue culture cells [J].
Balsalobre, A ;
Damiola, F ;
Schibler, U .
CELL, 1998, 93 (06) :929-937
[3]   Cryptochromes: Blue light receptors for plants and animals [J].
Cashmore, AR ;
Jarillo, JA ;
Wu, YJ ;
Liu, DM .
SCIENCE, 1999, 284 (5415) :760-765
[4]   Light-dependent sequestration of TIMELESS by CRYPTOCHROME [J].
Ceriani, MF ;
Darlington, TK ;
Staknis, D ;
Más, P ;
Petti, AA ;
Weitz, CJ ;
Kay, SA .
SCIENCE, 1999, 285 (5427) :553-556
[5]   Closing the circadian loop:: CLOCK-induced transcription of its own inhibitors per and tim [J].
Darlington, TK ;
Wager-Smith, K ;
Ceriani, MF ;
Staknis, D ;
Gekakis, N ;
Steeves, TDL ;
Weitz, CJ ;
Takahashi, JS ;
Kay, SA .
SCIENCE, 1998, 280 (5369) :1599-1603
[6]   Molecular bases for circadian clocks [J].
Dunlap, JC .
CELL, 1999, 96 (02) :271-290
[7]   Role of the CLOCK protein in the mammalian circadian mechanism [J].
Gekakis, N ;
Staknis, D ;
Nguyen, HB ;
Davis, FC ;
Wilsbacher, LD ;
King, DP ;
Takahashi, JS ;
Weitz, CJ .
SCIENCE, 1998, 280 (5369) :1564-1569
[8]   ISOLATION OF TIMELESS BY PER PROTEIN-INTERACTION - DEFECTIVE INTERACTION BETWEEN TIMELESS PROTEIN AND LONG-PERIOD MUTANT PER(L) [J].
GEKAKIS, N ;
SAEZ, L ;
DELAHAYEBROWN, AM ;
MYERS, MP ;
SEHGAL, A ;
YOUNG, MW ;
WEITZ, CJ .
SCIENCE, 1995, 270 (5237) :811-815
[9]  
GRIFFIN EA, UNPUB
[10]   The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors [J].
Hogenesch, JB ;
Gu, YZ ;
Jain, SJ ;
Bradfield, CA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (10) :5474-5479