A variational principle for contact Hamiltonian systems

被引:15
作者
Wang, Ya-Nan [1 ]
Yan, Jun [2 ,3 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210097, Jiangsu, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
基金
中国博士后科学基金;
关键词
Contact Hamiltonian system; Implicit variational principle; Minimization method; VISCOSITY SOLUTIONS;
D O I
10.1016/j.jde.2019.04.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we generalize the implicit variational principle in [9] from autonomous contact Hamiltonian systems in T*M x R with M is a compact Riemannian manifold to the non-autonomous systems with M is a complete Riemannian manifold. We also give some important properties of action minimizers (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:4047 / 4088
页数:42
相关论文
共 11 条
[11]   A New Kind of Lax-Oleinik Type Operator with Parameters for Time-Periodic Positive Definite Lagrangian Systems [J].
Wang, Kaizhi ;
Yan, Jun .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 309 (03) :663-691