A variational principle for contact Hamiltonian systems

被引:15
作者
Wang, Ya-Nan [1 ]
Yan, Jun [2 ,3 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210097, Jiangsu, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
基金
中国博士后科学基金;
关键词
Contact Hamiltonian system; Implicit variational principle; Minimization method; VISCOSITY SOLUTIONS;
D O I
10.1016/j.jde.2019.04.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we generalize the implicit variational principle in [9] from autonomous contact Hamiltonian systems in T*M x R with M is a compact Riemannian manifold to the non-autonomous systems with M is a complete Riemannian manifold. We also give some important properties of action minimizers (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:4047 / 4088
页数:42
相关论文
共 11 条
  • [1] [Anonymous], 1983, GEOMETRICAL METHODS
  • [2] Buttazzo G., 1998, Oxford Lecture Series in Mathematics and its Applications
  • [3] Cannarsa P., 2018, ARXIV180403411
  • [4] SOME PROPERTIES OF VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS
    CRANDALL, MG
    EVANS, LC
    LIONS, PL
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (02) : 487 - 502
  • [5] VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS
    CRANDALL, MG
    LIONS, PL
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (01) : 1 - 42
  • [6] Fathi Albert, 2008, WEAK KAM THEOREMS LA
  • [7] ACTION MINIMIZING INVARIANT-MEASURES FOR POSITIVE DEFINITE LAGRANGIAN SYSTEMS
    MATHER, JN
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1991, 207 (02) : 169 - 207
  • [8] Aubry-Mather Theory for Contact Hamiltonian Systems
    Wang, Kaizhi
    Wang, Lin
    Yan, Jun
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 366 (03) : 981 - 1023
  • [9] Variational principle for contact Hamiltonian systems and its applications
    Wang, Kaizhi
    Wang, Lin
    Yan, Jun
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 123 : 167 - 200
  • [10] Implicit variational principle for contact Hamiltonian systems
    Wang, Kaizhi
    Wang, Lin
    Yan, Jun
    [J]. NONLINEARITY, 2017, 30 (02) : 492 - 515