Trapping centers at the superfluid-Mott-insulator criticality: Transition between charge-quantized states

被引:8
作者
Huang, Yuan [1 ,2 ,3 ]
Chen, Kun [1 ,2 ,3 ]
Deng, Youjin [1 ,2 ,3 ]
Svistunov, Boris [3 ,4 ,5 ]
机构
[1] Univ Sci & Technol China, Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[3] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA
[4] Kurchatov Inst, Natl Res Ctr, Moscow 123182, Russia
[5] Zhejiang Univ Technol, Wilczek Quantum Ctr, Hangzhou 310014, Zhejiang, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
2-DIMENSIONAL ANTIFERROMAGNETS; QUANTUM IMPURITY; SUPERCONDUCTORS; DYNAMICS; ATOMS;
D O I
10.1103/PhysRevB.94.220502
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Under the conditions of superfluid-Mott-insulator criticality in two dimensions, the trapping centers-i.e., local potential wells and bumps-are generically characterized by an integer charge corresponding to the number of trapped particles (if positive) or holes (if negative). Varying the strength of the center leads to a transition between two competing ground states with charges differing by +/- 1. The hallmark of the transition scenario is a splitting of the number density distortion delta n(r) into a half-integer core and a large halo carrying a complementary charge of +/- 1/2. The sign of the halo changes across the transition and the radius of the halo r(0) diverges on the approach to the critical strength of the center, V = V-c, by the law r(0) alpha |V - V-c|-((nu) over tilde), with (nu) over tilde approximate to 2.33(5).
引用
收藏
页数:5
相关论文
共 19 条
[1]  
[Anonymous], 2011, QUANTUM PHASE TRANSI
[2]   Probing the Superfluid-to-Mott Insulator Transition at the Single-Atom Level [J].
Bakr, W. S. ;
Peng, A. ;
Tai, M. E. ;
Ma, R. ;
Simon, J. ;
Gillen, J. I. ;
Foelling, S. ;
Pollet, L. ;
Greiner, M. .
SCIENCE, 2010, 329 (5991) :547-550
[3]   Monte Carlo study of the two-dimensional Bose-Hubbard model [J].
Capogrosso-Sansone, Barbara ;
Soeyler, Sebnem Guenes ;
Prokof'ev, Nikolay ;
Svistunov, Boris .
PHYSICAL REVIEW A, 2008, 77 (01)
[4]  
FISHER MPA, 1989, PHYS REV B, V40, P546, DOI [10.1103/PhysRevB.40.546, 10.1063/1.38820]
[5]  
Fukuhara T, 2013, NAT PHYS, V9, P235, DOI [10.1038/NPHYS2561, 10.1038/nphys2561]
[6]   Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms [J].
Greiner, M ;
Mandel, O ;
Esslinger, T ;
Hänsch, TW ;
Bloch, I .
NATURE, 2002, 415 (6867) :39-44
[7]   Cold bosonic atoms in optical lattices [J].
Jaksch, D ;
Bruder, C ;
Cirac, JI ;
Gardiner, CW ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 1998, 81 (15) :3108-3111
[8]  
Prokof'ev N. V., 1998, SOV PHYS JETP, V87, P310
[9]   Fermi-polaron problem: Diagrammatic Monte Carlo method for divergent sign-alternating series [J].
Prokof'ev, Nikolay ;
Svistunov, Boris .
PHYSICAL REVIEW B, 2008, 77 (02)
[10]   Worm algorithm in quantum Monte Carlo simulations [J].
Prokof'ev, NV ;
Svistunov, BV ;
Tupitsyn, IS .
PHYSICS LETTERS A, 1998, 238 (4-5) :253-257