Invariance of closed convex sets and domination criteria for semigroups

被引:64
作者
Ouhabaz, EM
机构
[1] TECH UNIV BERLIN,D-10623 BERLIN,GERMANY
[2] UNIV POTSDAM,FB MATH,MAX PLANCK ARBEITSGRP,D-14415 POTSDAM,GERMANY
关键词
sesquilinear forms; convex sets; positivity of semigroups; domination;
D O I
10.1007/BF00275797
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let a and b be two positive continuous and closed sesquilinear forms on the Hilbert space H = L(2)(Omega, mu). Denote by T = T(t)(t greater than or equal to 0) and S = S(t)(t greater than or equal to 0), the semigroups generated by a and b on H. We give criteria in terms of a and b guaranteeing that the semigroup T is dominated by S, i.e. \T(t)f\ less than or equal to S(t)\f\ for all t greater than or equal to 0 and f is an element of H. The method proposed uses ideas on invariance of closed convex sets of H under semigroups. Applications to elliptic operators and concrete examples are given.
引用
收藏
页码:611 / 625
页数:15
相关论文
共 27 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]  
ALBEVERIO S, 1992, CR ACAD SCI I-MATH, V314, P77
[3]  
ANCONA A, 1975, J MATH PURE APPL, V54, P75
[4]  
[Anonymous], 1992, THEORIE APPL
[5]  
[Anonymous], 1993, POTENTIAL ANAL, DOI DOI 10.1007/BF01048510
[6]  
[Anonymous], 1989, CAMBRIDGE TRACTS MAT
[7]   ABSORPTION SEMIGROUPS AND DIRICHLET BOUNDARY-CONDITIONS [J].
ARENDT, W ;
BATTY, CJK .
MATHEMATISCHE ANNALEN, 1993, 295 (03) :427-448
[8]  
BENILAN P, 1989, IN PRESS P 2 INT C S
[9]  
BREZIS H., 1973, North-Holland Math. Stud., V5
[10]  
Brezis H., 1970, J. Functional Analysis, V6, P237, DOI [10.1016/0022-1236(70)90060-1, DOI 10.1016/0022-1236(70)90060-1]