On Growth of Meromorphic Solutions for Linear Difference Equations

被引:16
作者
Chen, Zong-Xuan [1 ]
Shon, Kwang Ho [2 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[2] Pusan Natl Univ, Dept Math, Coll Nat Sci, Pusan 609735, South Korea
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
ZEROS;
D O I
10.1155/2013/619296
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We mainly study growth of linear difference equations P-n(z)f(z + n) + ... + P-1(z)f(z + 1) + P-0(z)f(z) = 0 and P-n(z)f(z + n) + ... + P-1(z)f(z + 1) + P-0(z)f(z) = f(z), where F(z), P-0(z), ... , P-n(z) are polynomials such that F(z)P-0(z)P-n(z) not equivalent to 0 and give the most weak condition to guarantee that orders of all transcendental meromorphic solutions of the above equations are greater than or equal to 1.
引用
收藏
页数:6
相关论文
共 13 条
[1]   Zeros of differences of meromorphic functions [J].
Bergweiler, Walter .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2007, 142 :133-147
[2]   Growth and zeros of meromorphic solution of some linear difference equations [J].
Chen, Zong-Xuan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (01) :235-241
[3]   On growth, zeros and poles of meromorphic solutions of linear and nonlinear difference equations [J].
Chen ZongXuan .
SCIENCE CHINA-MATHEMATICS, 2011, 54 (10) :2123-2133
[4]   On the Nevanlinna characteristic of f(z+η) and difference equations in the complex plane [J].
Chiang, Yik-Man ;
Feng, Shao-Ji .
RAMANUJAN JOURNAL, 2008, 16 (01) :105-129
[5]   Difference analogue of the Lemma on the Logarithmic Derivative with applications to difference equations [J].
Halburd, RG ;
Korhonen, RJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 314 (02) :477-487
[6]  
HAYMAN WK, 1964, MEROMORPHIC FUNCTION
[7]  
Hayman WK., 1960, Commentarii Mathematici Helvetici, V34, P75, DOI DOI 10.1007/BF02565929
[8]   Wiman-Valiron method for difference equations [J].
Ishizaki, K ;
Yanagihara, N .
NAGOYA MATHEMATICAL JOURNAL, 2004, 175 :75-102
[9]   On difference Riccati equations and second order linear difference equations [J].
Ishizaki, Katsuya .
AEQUATIONES MATHEMATICAE, 2011, 81 (1-2) :185-198
[10]  
Laine I, 1993, DEGRUYTER STUDIES MA, V15