Hyers-Ulam Stability and Existence of Solutions for Differential Equations with Caputo-Fabrizio Fractional Derivative

被引:40
|
作者
Liu, Kui [1 ]
Feckan, Michal [2 ,3 ]
O'Regan, D. [4 ]
Wang, JinRong [1 ,5 ]
机构
[1] Guizhou Univ, Dept Math, Guiyang 550025, Guizhou, Peoples R China
[2] Comenius Univ, Fac Math Phys & Informat, Dept Math Anal & Numer Math, Bratislava 84248, Slovakia
[3] Slovak Acad Sci, Math Inst, Stefanikova 49, Bratislava 81473, Slovakia
[4] Natl Univ Ireland, Sch Math Stat & Appl Math, Galway H91 TK33, Ireland
[5] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Peoples R China
来源
MATHEMATICS | 2019年 / 7卷 / 04期
基金
中国国家自然科学基金;
关键词
Caputo-Fabrizio fractional differential equations; Hyers-Ulam stability; MULTIPLE POSITIVE SOLUTIONS; SYSTEM MODEL;
D O I
10.3390/math7040333
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the Hyers-Ulam stability of linear Caputo-Fabrizio fractional differential equation is established using the Laplace transform method. We also derive a generalized Hyers-Ulam stability result via the Gronwall inequality. In addition, we establish existence and uniqueness of solutions for nonlinear Caputo-Fabrizio fractional differential equations using the generalized Banach fixed point theorem and Schaefer's fixed point theorem. Finally, two examples are given to illustrate our main results.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Hyers-Ulam stability and existence of solutions for weighted Caputo-Fabrizio fractional differential equations
    Wu X.
    Chen F.
    Deng S.
    Chaos, Solitons and Fractals: X, 2020, 5
  • [2] On Hyers-Ulam Stability for Fractional Differential Equations Including the New Caputo-Fabrizio Fractional Derivative
    Basci, Yasennn
    Ogrekci, Suleyman
    Misir, Adil
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2019, 16 (05)
  • [3] A Fixed-Point Approach to the Hyers-Ulam Stability of Caputo-Fabrizio Fractional Differential Equations
    Liu, Kui
    Feckan, Michal
    Wang, JinRong
    MATHEMATICS, 2020, 8 (04)
  • [4] Hyers-Ulam Stability and Existence of Solutions to the Generalized Liouville-Caputo Fractional Differential Equations
    Liu, Kui
    Feckan, Michal
    Wang, Jinrong
    SYMMETRY-BASEL, 2020, 12 (06):
  • [5] Existence and Hyers-Ulam Stability for Random Impulsive Stochastic Pantograph Equations with the Caputo Fractional Derivative
    Gao, Dongdong
    Li, Jianli
    MATHEMATICS, 2024, 12 (08)
  • [6] Hyers-Ulam stability and existence of solutions for fractional differential equations with Mittag-Leffler kernel
    Liu, Kui
    Wang, JinRong
    Zhou, Yong
    O'Regan, Donal
    CHAOS SOLITONS & FRACTALS, 2020, 132 (132)
  • [7] Hyers-Ulam stability of fractional linear differential equations involving Caputo fractional derivatives
    Chun Wang
    Tian-Zhou Xu
    Applications of Mathematics, 2015, 60 : 383 - 393
  • [8] HYERS-ULAM STABILITY OF FRACTIONAL LINEAR DIFFERENTIAL EQUATIONS INVOLVING CAPUTO FRACTIONAL DERIVATIVES
    Wang, Chun
    Xu, Tian-Zhou
    APPLICATIONS OF MATHEMATICS, 2015, 60 (04) : 383 - 393
  • [9] Existence and Hyers-Ulam Stability of Jerk-Type Caputo and Hadamard Mixed Fractional Differential Equations
    Ma, Yanli
    Maryam, Maryam
    Riaz, Usman
    Popa, Ioan-Lucian
    Ragoub, Lakhdar
    Zada, Akbar
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (03)
  • [10] On Hyers-Ulam-Rassias stability of fractional differential equations with Caputo derivative
    El-hady, El-sayed
    Ogrekci, Suleyman
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2021, 22 (04): : 325 - 332